1,644
Views
4
CrossRef citations to date
0
Altmetric
Influenza infections

Infection and tissue distribution of highly pathogenic avian influenza A type H5N1 (clade 2.3.4.4b) in red fox kits (Vulpes vulpes)

, , , , , , , , , , & show all
Article: 2249554 | Received 18 Dec 2022, Accepted 14 Aug 2023, Published online: 17 Aug 2023

References

  • Bosch FX, Orlich M, Klenk H-D, et al. The structure of the hemagglutinin, a determinant for the pathogenicity of influenza viruses. Virology. 1979;95:197–207. DOI:10.1016/0042-6822(79)90414-8
  • Böttcher-Friebertshäuser E, Garten W, Matrosovich M, et al. The hemagglutinin: a determinant of pathogenicity. In: Compans RW, Oldstone MBA, editor. Influenza pathogenesis and control – volume I [Internet]. Cham: Springer International Publishing; 2014 [cited 2023 Jun 20]. p. 3–34. DOI:10.1007/82_2014_384
  • Sagong M, Lee Y, Song S, et al. Emergence of clade 2.3.4.4b novel reassortant H5N1 high pathogenicity avian influenza virus in South Korea during late 2021. Transbounding Emerg Dis. 2022:tbed.14551.
  • Bevins SN, Shriner SA, Cumbee JC, et al. Intercontinental movement of H5 2.3.4.4 highly pathogenic avian influenza A (H5N1) to the United States, 2021 [Internet]. Microbiology. 2022 [cited 2022 Jul 13]. Available from: http://biorxiv.org/lookup/doi/10.11012022.02.11.479922
  • Richards B. Distribution of highly pathogenic avian influenza in North America, 2021/2022 [Internet]. [cited 2022 Jul 18]. Available from: https://www.usgs.gov/centers/nwhc/science/distribution-highly-pathogenic-avian-influenza-north-america-20212022
  • Reperant LA, van Amerongen G, van de Bildt MWG, et al. Highly pathogenic avian influenza virus (H5N1) infection in red foxes fed infected bird carcasses. Emerg Infect Dis. 2008;14:1835–1841. DOI:10.3201/eid1412.080470
  • Floyd T, Banyard AC, Lean FZX, et al. Encephalitis and death in wild mammals at a rehabilitation center after infection with highly pathogenic avian influenza A (H5N8) virus, United Kingdom. Emerg Infect Dis. 2021;27:2856–2863. DOI:10.3201/eid2711.211225
  • Rijks JM, Hesselink H, Lollinga P, et al. Highly pathogenic avian influenza A (H5N1) virus in wild red foxes, The Netherlands, 2021. Emerg Infect Dis. 2021;27:2960–2962. DOI:10.3201/eid2711.211281
  • Hiono T, Kobayashi D, Kobayashi A, et al. Virological, pathological, and glycovirological investigations of an Ezo red fox and a tanuki naturally infected with H5N1 high pathogenicity avian influenza viruses in Hokkaido, Japan. Virology. 2023;578:35–44. DOI:10.1016/j.virol.2022.11.008
  • Kuiken T, Riteau B, Fouchier R, et al. Pathogenesis of influenza virus infections: the good, the bad and the ugly. Curr Opin Virol. 2012;2:276–286. DOI:10.1016/j.coviro.2012.02.013
  • Goodman LB, Anderson RR, Slater M, et al. High-throughput detection of respiratory pathogens in animal specimens by nanoscale PCR. JoVE. 2016: 54781.
  • National Veterinary Services Laboratories NAHLN Document List [Internet]. USDA APHIS; 2022 [cited 2022 Sep 7]. Available from: https://www.aphis.usda.gov/animal_health/lab_info_services/downloads/ApprovedSOPList.pdf
  • Shu B, Wu K-H, Emery S, et al. Design and performance of the CDC real-time reverse transcriptase PCR swine flu panel for detection of 2009 A (H1N1) pandemic influenza virus. J Clin Microbiol. 2011;49:2614–2619. DOI:10.1128/JCM.02636-10
  • RNAscope 2.5 HD Detection Reagenet-Red User Manual [Internet]. Advanced Cell Diagnostics; [cited 2023 Mar 1]. Available from: https://acdbio.com/sites/default/files/322360-USM%20RNAscope%202.5%20HD%20RED%20Pt2_11052015.pdf
  • Zhou B, Deng Y-M, Barnes JR, et al. Multiplex reverse transcription-PCR for simultaneous surveillance of influenza A and B viruses. McAdam AJ, editor. J Clin Microbiol. 2017;55:3492–3501. DOI:10.1128/JCM.00957-17
  • Mitchell PK, Cronk BD, Voorhees IEH, et al. Method comparison of targeted influenza A virus typing and whole-genome sequencing from respiratory specimens of companion animals. J VET Diagn Invest. 2021;33:191–201. DOI:10.1177/1040638720933875
  • Ip HS, Uhm S, Killian ML, et al. An evaluation of avian influenza virus whole-genome sequencing approaches using nanopore technology. Microorganisms. 2023;11:529. DOI:10.3390/microorganisms11020529
  • Basecalling with Guppy — de.NBI Nanopore Training Course latest documentation [Internet]. [cited 2023 Apr 5]. Available from: https://denbi-nanopore-training-course.readthedocs.io/en/latest/basecalling/basecalling_1.html
  • De Coster W, D’Hert S, Schultz DT, et al. Nanopack: visualizing and processing long-read sequencing data. Bioinformatics. 2018;34:2666–2669. DOI:10.1093/bioinformatics/bty149
  • Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20:257. DOI:10.1186/s13059-019-1891-0
  • Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nature Communications. 2016;7:11257. DOI:10.1038/ncomms11257
  • Suzuki H. minialign [Internet]. 2023 [cited 2023 Apr 5]. Available from: https://github.com/ocxtal/minialign
  • Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–2993. DOI:10.1093/bioinformatics/btr509
  • Shi J, Zeng X, Cui P, et al. Alarming situation of emerging H5 and H7 avian influenza and effective control strategies. Emerg Microbes Infect; 12:2155072. DOI:10.1080/22221751.2022.2155072
  • Cui P, Shi J, Wang C, et al. Global dissemination of H5N1 influenza viruses bearing the clade 2.3.4.4b HA gene and biologic analysis of the ones detected in China. Emerg Microbes Infect. 2022;11:1693–1704. DOI:10.1080/22221751.2022.2088407
  • Li H. New strategies to improve minimap2 alignment accuracy. Bioinformatics. 2021;37:4572–4574. DOI:10.1093/bioinformatics/btab705
  • Danecek P, Bonfield JK, Liddle J, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10:giab008. DOI:10.1093/gigascience/giab008
  • FluSurver [Internet]. Bioinformatics Institute; [cited 2023 Mar 17]. Available from: https://flusurver.bii.a-star.edu.sg/
  • Argimón S, Abudahab K, Goater RJE, et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microb Genomics. 2016;2:e000093. DOI:10.1099/mgen.0.000093
  • Geneious. Bioinformatics software for sequence data analysis [Internet]. Geneious. [cited 2023 Apr 9]. Available from: https://www.geneious.com/
  • Zhang Y, Aevermann BD, Anderson TK, et al. Influenza research database: an integrated bioinformatics resource for influenza virus research. Nucleic Acids Res. 2017;45:D466–D474. DOI:10.1093/nar/gkw857
  • Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–780. DOI:10.1093/molbev/mst010
  • Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38:3022–3027. DOI:10.1093/molbev/msab120
  • Releases rambaut/figtree [Internet]. GitHub. [cited 2023 Apr 5]. Available from: https://github.com/rambaut/figtree/releases
  • Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10:512–526.
  • Miotto O, Heiny A, Tan TW, et al. Identification of human-to-human transmissibility factors in PB2 proteins of influenza A by large-scale mutual information analysis. BMC Bioinformatics. 2008;9(Suppl 1):S18. DOI:10.1186/1471-2105-9-S1-S18
  • Salomon R, Franks J, Govorkova EA, et al. The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04. J Exp Med. 2006;203:689–697. DOI:10.1084/jem.20051938
  • Feng X, Wang Z, Shi J, et al. Glycine at position 622 in PB1 contributes to the virulence of H5N1 avian influenza virus in mice. J Virol. 2016;90:1872–1879. DOI:10.1128/JVI.02387-15
  • Khaliq Z, Leijon M, Belák S, et al. Identification of combinatorial host-specific signatures with a potential to affect host adaptation in influenza A H1N1 and H3N2 subtypes. BMC Genomics. 2016;17:529. DOI:10.1186/s12864-016-2919-4
  • Mengual-Chuliá B, Alonso-Cordero A, Cano L, et al. Whole-genome analysis surveillance of influenza A virus resistance to polymerase complex inhibitors in eastern Spain from 2016 to 2019. Antimicrob Agents Chemother; 65:e02718-20.
  • Naeem A, Elbakkouri K, Alfaiz A, et al. Antigenic drift of hemagglutinin and neuraminidase in seasonal H1N1 influenza viruses from Saudi Arabia in 2014 to 2015. J Med Virol. 2020;92:3016–3027. DOI:10.1002/jmv.25759
  • Huang P, Sun L, Li J, et al. Potential cross-species transmission of highly pathogenic avian influenza H5 subtype (HPAI H5) viruses to humans calls for the development of H5-specific and universal influenza vaccines. Cell Discov. 2023;9:1–13.
  • Watanabe Y, Ibrahim MS, Ellakany HF, et al. Acquisition of human-type receptor binding specificity by new H5N1 influenza virus sublineages during their emergence in birds in Egypt. PLoS Pathog. 2011;7:e1002068. DOI:10.1371/journal.ppat.1002068
  • Nakajima S, Nakajima K, Nobusawa E, et al. Comparison of epitope structures of H3HAs through protein modeling of influenza A virus hemagglutinin: mechanism for selection of antigenic variants in the presence of a monoclonal antibody. Microbiol Immunol. 2007;51:1179–1187. DOI:10.1111/j.1348-0421.2007.tb04013.x
  • Finkelstein DB, Mukatira S, Mehta PK, et al. Persistent host markers in pandemic and H5N1 influenza viruses. J Virol. 2007;81:10292–10299. DOI:10.1128/JVI.00921-07
  • Saito T, Taylor G, Laver WG, et al. Antigenicity of the N8 influenza A virus neuraminidase: existence of an epitope at the subunit interface of the neuraminidase. J Virol. 1994;68:1790–1796. DOI:10.1128/jvi.68.3.1790-1796.1994
  • Monto AS, McKimm-Breschkin JL, Macken C, et al. Detection of influenza viruses resistant to neuraminidase inhibitors in global surveillance during the first 3 years of their use. Antimicrob Agents Chemother. 2006;50:2395–2402. DOI:10.1128/AAC.01339-05
  • Webster RG, Air GM, Metzger DW, et al. Antigenic structure and variation in an influenza virus N9 neuraminidase. J Virol. 1987;61:2910–2916. DOI:10.1128/jvi.61.9.2910-2916.1987
  • Fan S, Deng G, Song J, et al. Two amino acid residues in the matrix protein M1 contribute to the virulence difference of H5N1 avian influenza viruses in mice. Virology. 2009;384:28–32. DOI:10.1016/j.virol.2008.11.044
  • Chen G-W, Shih S-R. Genomic signatures of influenza A pandemic (H1N1) 2009 virus. Emerg Infect Dis. 2009;15:1897–1903. DOI:10.3201/eid1512.090845
  • Youk S-S, Lee D-H, Leyson CM, et al. Loss of fitness of Mexican H7N3 highly pathogenic avian influenza virus in mallards after circulating in chickens. J Virol. 2019;93. DOI:10.1128/jvi.00543-19.
  • Jackson D, Hossain MJ, Hickman D, et al. A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity. Proc Natl Acad Sci U S A. 2008;105:4381–4386. DOI:10.1073/pnas.0800482105
  • Jiao P, Tian G, Li Y, et al. A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J Virol. 2008;82:1146–1154. DOI:10.1128/JVI.01698-07
  • Ayllon J, Domingues P, Rajsbaum R, et al. A single amino acid substitution in the novel H7N9 influenza A virus NS1 protein increases CPSF30 binding and virulence. J Virol. 2014;88:12146–12151. DOI:10.1128/JVI.01567-14
  • Nagy A, Černíková L, Stará M. A new clade 2.3.4.4b H5N1 highly pathogenic avian influenza genotype detected in Europe in 2021. Arch Virol. 2022;167:1455–1459. DOI:10.1007/s00705-022-05442-6
  • Re3data.Org. GISAID. 2012 [cited 2023 Apr 15]; Available from: https://www.re3data.org/repository/r3d100010126
  • Bordes L, Vreman S, Heutink R, et al. Highly pathogenic avian influenza H5N1 virus infections in wild red foxes (Vulpes vulpes) show neurotropism and adaptive virus mutations [Internet]. Microbiology. 2022 [cited 2022 Jul 26]. Available from: http://biorxiv.org/lookup/doi/10.11012022.07.21.501071