986
Views
2
CrossRef citations to date
0
Altmetric
Tuberculosis

Genomic epidemiology sheds light on the emergence and spread of Mycobacterium bovis Eu2 Clonal Complex in Portugal

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2253340 | Received 10 Apr 2023, Accepted 24 Aug 2023, Published online: 06 Sep 2023

References

  • Pereira AC, Reis AC, Ramos B, et al. Animal tuberculosis: impact of disease heterogeneity in transmission, diagnosis and control. Transbound Emerg Dis. 2020;67(5):1828–1846. doi:10.1111/tbed.13539
  • Ramos B, Pereira AC, Reis AC, et al. Estimates of the global and continental burden of animal tuberculosis in key livestock species worldwide: a meta-analysis study. One Health. 2020;10:100169, doi:10.1016/j.onehlt.2020.100169
  • Reis AC, Ramos B, Pereira AC, et al. The hard numbers of tuberculosis epidemiology in wildlife: a meta-regression and systematic review. Transbound Emerg Dis. 2021. doi:10.1111/tbed.13948
  • Reis AC, Ramos B, Pereira AC, et al. Global trends of epidemiological research in livestock tuberculosis for the last four decades. Transbound Emerg Dis. 2021. doi:10.1111/tbed.13763
  • Reis AC, Tenreiro R, Albuquerque T, et al. Long-term molecular surveillance provides clues on a cattle origin for Mycobacterium bovis in Portugal. Sci Rep. 2020;10(1):20856, doi:10.1038/s41598-020-77713-8
  • Cunha MV, Matos F, Canto A, et al. Implications and challenges of tuberculosis in wildlife ungulates in Portugal: a molecular epidemiology perspective. Res Vet Sci. 2012;92(2):225–235. doi:10.1016/j.rvsc.2011.03.009.
  • Direcção Geral de Alimentação e Veterinária (DGAV). Programme for the eradication of bovine tuberculosis, bovine brucellosis or sheep and goat brucellosis. Programmes for eradication, control and surveillance of animal diseases and zoonoses submitted for obtaining EU financial contribution; 2019.
  • Direcção Geral de Veterinária (DGV). [Plano de controlo e erradicação de Tuberculose bovina em caça maior]. Ministério da Agricultura, Mar, Ambiente e Ordenamento do Território; 2011.
  • Rodriguez-Campos S, Schürch AC, Dale J, et al. DNA fingerprinting of Mycobacterium tuberculosis: from phage typing to whole-genome sequencing. Infect Genet Evol. 2012;12(4):602–609. doi:10.1016/j.meegid.2011.08.032
  • Crispell J, Zadoks RN, Harris SR, et al. Using whole genome sequencing to investigate transmission in a multi-host system: bovine tuberculosis in New Zealand. BMC Genomics. 2017;18(1):180, doi:10.1186/s12864-017-3569-x
  • Crispell J, Benton CH, Balaz D, et al. Fog signaling has diverse roles in epithelial morphogenesis in insects. eLife. 2019;8:e45833, doi:10.7554/eLife.47346
  • Trewby H, Wright D, Breadon EL, et al. Use of bacterial whole-genome sequencing to investigate local persistence and spread in bovine tuberculosis. Epidemics. 2016;14:26–35. doi:10.1016/j.epidem.2015.08.003
  • Duault H, Michelet L, Boschiroli M-L, et al. A Bayesian evolutionary model towards understanding wildlife contribution to F4-family Mycobacterium bovis transmission in the South-West of France. Vet Res 2022;53(1):28, doi:10.1186/s13567-022-01044-x
  • Salvador LCM, O’Brien DJ, Cosgrove MK, et al. Disease management at the wildlife-livestock interface: using whole-genome sequencing to study the role of elk in Mycobacterium bovis transmission in Michigan, USA. Mol Ecol. 2019;28(9):2192–2205. doi:10.1111/mec.15061
  • Canini L, Modenesi G, Courcoul A, et al. Deciphering the role of host species for two Mycobacterium bovis genotypes from the European 3 clonal complex circulation within a cattle-badger-wild boar multihost system. Microbiol Open. 2023;12(1):e1331, doi:10.1002/mbo3.1331
  • Reis AC, Salvador LCM, Robbe-Austerman S, et al. Whole genome sequencing refines knowledge on the population structure of mycobacterium bovis from a multi-host tuberculosis system. Microorganisms. 2021;9(8). doi:10.3390/microorganisms9081585
  • Guimaraes AMS, Zimpel CK. Mycobacterium bovis: from genotyping to genome sequencing. Microorganisms. 2020; 8(5). doi:10.3390/microorganisms8050667
  • Chen S, Zhou Y, Chen Y, et al. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–i890. doi:10.1093/bioinformatics/bty560. PubMed PMID: 30423086; PubMed Central PMCID: PMCPMC6129281. eng.
  • Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20(1):257, doi:10.1186/s13059-019-1891-0
  • Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinf. 2013;14(2):178–192. doi:10.1093/bib/bbs017. PubMed PMID: 22517427; PubMed Central PMCID: PMCPMC3603213. eng.
  • Gabbassov E, Moreno-Molina M, Comas I, et al. SplitStrains, a tool to identify and separate mixed Mycobacterium tuberculosis infections from WGS data. Microb Genom. 2021;7(6). doi:10.1099/mgen.0.000607. PubMed PMID: 34165419; PubMed Central PMCID: PMCPMC8461467. eng.
  • Pinto D, Themudo G, Pereira AC, et al. Rescue of Mycobacterium bovis DNA obtained through routine analysis of animal samples: key steps for robust whole genome sequence data generation and interpretation. Submitted.
  • Steiner A, Stucki D, Coscolla M, et al. Kvar Q: targeted and direct variant calling from fastq reads of bacterial genomes. BMC Genomics. 2014;15(1):881, doi:10.1186/1471-2164-15-881
  • Zwyer M, Çavusoglu C, Ghielmetti G, et al. A new nomenclature for the livestock-associated Mycobacterium tuberculosis complex based on phylogenomics. Open Res Europe. 2021;1(100). doi:10.12688/openreseurope.14029.2
  • Kumar S, Stecher G, Li M, et al. Mega X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018;35(6):1547–1549. doi:10.1093/molbev/msy096. PubMed PMID: 29722887; PubMed Central PMCID: PMCPMC5967553. eng.
  • Rambaut A, Lam TT, Max Carvalho L, et al. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2016;2(1):vew007, doi:10.1093/ve/vew007
  • To T-H, Jung M, Lycett S, et al. Fast dating using least-squares criteria and algorithms. Syst Biol 2016;65(1):82–97. doi:10.1093/sysbio/syv068
  • Darriba D, Taboada GL, Doallo R, et al. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772–772. doi:10.1038/nmeth.2109
  • Bouckaert R, Vaughan TG, Barido-Sottani J, et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2019;15(4):e1006650, doi:10.1371/journal.pcbi.1006650
  • Drummond AJ, Ho SYW, Phillips MJ, et al. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4(5):e88, doi:10.1371/journal.pbio.0040088
  • Drummond AJ, Rambaut A, Shapiro B, et al. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol. 2005;22(5):1185–1192. doi:10.1093/molbev/msi103
  • Drummond AJ, Nicholls GK, Rodrigo AG, et al. Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics. 2002;161(3):1307–1320. doi:10.1093/genetics/161.3.1307
  • Ferreira MAR, Suchard MA. Bayesian analysis of elapsed times in continuous-time Markov chains. Can J Stat. 2008;36(3):355–368. doi:https://doi.org/10.1002/cjs.5550360302.
  • Rambaut A, Drummond AJ, Xie D, et al. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst Biol 2018;67(5):901–904. doi:10.1093/sysbio/syy032
  • Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007;7(1):214, doi:10.1186/1471-2148-7-214
  • Lartillot N, Philippe H. Computing Bayes factors using thermodynamic integration. Syst Biol. 2006;55(2):195–207. doi:10.1080/10635150500433722. PubMed PMID: 16522570; eng.
  • Kass RE, Raftery AE. Bayes factors. J Am Stat Assoc. 1995;90(430):773–795. doi:10.1080/01621459.1995.10476572
  • Santos N, Richomme C, Nunes T, et al. Quantification of the animal tuberculosis multi-host community offers insights for control. Pathogens. 2020. doi:10.3390/pathogens9060421.
  • Lemey P, Rambaut A, Drummond AJ, et al. Bayesian phylogeography finds its roots. PLoS Comput Biol 2009;5(9):e1000520, doi:10.1371/journal.pcbi.1000520
  • Pagel M, Meade A, Barker D. Bayesian estimation of ancestral character states on phylogenies. Syst Biol 2004;53(5):673–684. doi:10.1080/10635150490522232
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13(11):2498–2504. doi:10.1101/gr.1239303
  • Menardo F, Duchêne S, Brites D, et al. The molecular clock of Mycobacterium tuberculosis. PLoS Pathog 2019;15(9):e1008067, doi:10.1371/journal.ppat.1008067
  • Zimpel CK, Patané JSL, Guedes ACP, et al. Global distribution and evolution of mycobacterium bovis lineages. Front Microbiol. 2020;11; doi:10.3389/fmicb.2020.00843. English.
  • Allen AR, Skuce RA, Byrne AW. Bovine tuberculosis in britain and Ireland – a perfect storm? The confluence of potential ecological and epidemiological impediments to controlling a chronic infectious disease [hypothesis and theory]. Front Vet Sci. 2018;5:109.
  • Cox DR, Donnelly CA, Bourne FJ, et al. Simple model for tuberculosis in cattle and badgers. Proc Natl Acad Sci USA. 2005;102(49):17588–17593. doi:10.1073/pnas.0509003102. PubMed PMID: 16306260; PubMed Central PMCID: PMCPMC1292989. eng.
  • Brooks-Pollock E, Wood JL. Eliminating bovine tuberculosis in cattle and badgers: insight from a dynamic model. Proc Biol Sci. 2015;282(1808):20150374, doi:10.1098/rspb.2015.0374. PubMed PMID: 25972466; PubMed Central PMCID: PMCPMC4455805. eng.
  • Delahay RJ, Walker N, Smith GC, et al. Long-term temporal trends and estimated transmission rates for Mycobacterium bovis infection in an undisturbed high-density badger (Meles meles) population. Epidemiol Infect. 2013;141(7):1445–1456. doi:10.1017/S0950268813000721. PubMed PMID: 23537573; PubMed Central PMCID: PMCPMC9151602. eng.
  • Santos N, Colino EF, Arnal MC, et al. Complementary roles of wild boar and red deer to animal tuberculosis maintenance in multi-host communities. Epidemics. 2022;41:100633, doi:10.1016/j.epidem.2022.100633.
  • Veličković N, Ferreira E, Djan M, et al. Demographic history, current expansion and future management challenges of wild boar populations in the Balkans and Europe. Heredity (Edinb). 2016;117(5):348–357. doi:10.1038/hdy.2016.53
  • Carvalho J, Torres RT, Acevedo P, et al. Propagule pressure and land cover changes as main drivers of red and roe deer expansion in mainland Portugal. Divers Distrib. 2018;24(4):551–564. doi:https://doi.org/10.1111/ddi.12703.
  • Vieira-Pinto M, Alberto J, Aranha J, et al. Combined evaluation of bovine tuberculosis in wild boar (Sus scrofa) and red deer (Cervus elaphus) from Central-East Portugal. Eur J Wildlife Res. 2011;57(6):1189–1201. doi:10.1007/s10344-011-0532-z
  • Santos N, Almeida V, Gortázar C, et al. Patterns of Mycobacterium tuberculosis-complex excretion and characterization of super-shedders in naturally-infected wild boar and red deer. Vet Res 2015;46(1):129, doi:10.1186/s13567-015-0271-3
  • Rosalino LM, Teixeira D, Camarinha C, et al. Even generalist and resilient species are affected by anthropic disturbance: evidence from wild boar activity patterns in a Mediterranean landscape. Mammal Res. 2022;67(3):317–325. doi:10.1007/s13364-022-00632-8
  • Ares-Pereira G, Rosalino LM, Teixeira D, et al. Eucalyptus plantations alter spatiotemporal relationships of wild ungulates. Agric Ecosyst Environ. 2022;340:108174, doi:https://doi.org/10.1016/j.agee.2022.108174.
  • Pozo P, VanderWaal K, Grau A, et al. Analysis of the cattle movement network and its association with the risk of bovine tuberculosis at the farm level in Castilla y Leon, Spain. Transbound Emerg Dis. 2019;66(1):327–340. doi:https://doi.org/10.1111/tbed.13025.
  • Palisson A, Courcoul A, Durand B. Role of cattle movements in bovine tuberculosis spread in France between 2005 and 2014. PLoS ONE. 2016;11(3):e0152578, doi:10.1371/journal.pone.0152578
  • Gilbert M, Mitchell A, Bourn D, et al. Cattle movements and bovine tuberculosis in Great Britain. Nature. 2005;435(7041):491–496. doi:10.1038/nature03548. PubMed PMID: 15917808; eng.
  • Charles C, Conde C, Vorimore F, et al. Features of mycobacterium bovis complete genomes belonging to 5 different lineages. Microorganisms. 2023. doi:10.3390/microorganisms11010177