1,855
Views
2
CrossRef citations to date
0
Altmetric
Antimicrobial Agents

SaeR as a novel target for antivirulence therapy against Staphylococcus aureus

ORCID Icon, , , , ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2254415 | Received 19 Apr 2023, Accepted 28 Aug 2023, Published online: 10 Sep 2023

References

  • Cheung GYC, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence. 2021;12(1):547–569. doi:10.1080/21505594.2021.1878688
  • Kest H, Kaushik A. Vancomycin-resistant Staphylococcus aureus: formidable threat or silence before the storm. J Infect Dis Epidemiol. 2019;5(5):93–101. doi:10.23937/2474-3658/1510093
  • Siberry GK, Tekle T, Carroll K, et al. Failure of clindamycin treatment of methicillin-resistant Staphylococcus aureus expressing inducible clindamycin resistance in vitro. Clin Infect Dis. 2003;37(9):1257–1260. doi:10.1086/377501
  • Gao P, Wei Y, Wan RE, et al. Subinhibitory concentrations of antibiotics exacerbate staphylococcal infection by inducing bacterial virulence. Microbiol Spectr. 2022;10(4):e0064022. doi:10.1128/spectrum.00640-22
  • Rasko DA, Sperandio V. Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discovery. 2010;9(2):117–128. doi:10.1038/nrd3013
  • Dickey SW, Cheung GYC, Otto M. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov. 2017;16(7):457–471. doi:10.1038/nrd.2017.23
  • Chihiro Sasakawa JH. Host-microbe interaction: bacteria. Curr Opin Microbiol. 2006;9(1):1–4. doi:10.1016/j.mib.2005.12.015
  • Sully EK, Malachowa N, Elmore BO, et al. Selective chemical inhibition of agr quorum sensing in Staphylococcus aureus promotes host defense with minimal impact on resistance. PLoS Pathog. 2014;10(6):e1004174. doi:10.1371/journal.ppat.1004174
  • Mellbye B, Schuster M. The sociomicrobiology of antivirulence drug resistance: a proof of concept. mBio. 2011;2(5):00131-11. doi:10.1128/mbio.00131-11
  • Goerke C, Fluckiger U, Steinhuber A, et al. Impact of the regulatory loci agr, sarA and sae of Staphylococcus aureus on the induction of alpha-toxin during device-related infection resolved by direct quantitative transcript analysis. Mol Microbiol. 2001;40(6):1439–1447. doi:10.1046/j.1365-2958.2001.02494.x
  • Giraudo AT, Calzolari A, Cataldi AA, et al. The sae locus of Staphylococcus aureus encodes a two-component regulatory system. FEMS Microbiol Lett. 1999;177(1):15–22. doi:10.1111/j.1574-6968.1999.tb13707.x
  • Sun F, Li C, Jeong D, et al. In the Staphylococcus aureus two-component system sae, the response regulator SaeR binds to a direct repeat sequence and DNA binding requires phosphorylation by the sensor kinase SaeS. J Bacteriol. 2010;192(8):2111–2127. doi:10.1128/JB.01524-09
  • Novick RP, Jiang D. The staphylococcal SaeRS system coordinates environmental signals with agr quorum sensing. Microbiology. 2003;149(Pt 10):2709–2717. doi:10.1099/mic.0.26575-0
  • Kuroda H, Kuroda M, Cui L, et al. Subinhibitory concentrations of beta-lactam induce haemolytic activity in Staphylococcus aureus through the SaeRS two-component system. FEMS Microbiol Lett. 2007;268(1):98–105. doi:10.1111/j.1574-6968.2006.00568.x
  • Jeong DW, Cho H, Lee H, et al. Identification of the P3 promoter and distinct roles of the two promoters of the SaeRS two-component system in Staphylococcus aureus. J Bacteriol. 2011;193(18):4672–4684. doi:10.1128/JB.00353-11
  • Liang X, Yu C, Sun J, et al. Inactivation of a two-component signal transduction system, SaeRS, eliminates adherence and attenuates virulence of Staphylococcus aureus. Infect Immun. 2006;74(8):4655–4665. doi:10.1128/IAI.00322-06
  • Zurek OW, Nygaard TK, Watkins RL, et al. The role of innate immunity in promoting SaeR/S-mediated virulence in Staphylococcus aureus. J Innate Immun. 2014;6(1):21–30. doi:10.1159/000351200
  • Liu Q, Cho H, Yeo WS, et al. The extracytoplasmic linker peptide of the sensor protein SaeS tunes the kinase activity required for staphylococcal virulence in response to host signals. PLoS Pathog. 2015;11(4):e1004799. doi:10.1371/journal.ppat.1004799
  • Borgogna TR, Hisey B, Heitmann E, et al. Secondary bacterial pneumonia by Staphylococcus aureus following influenza A infection is SaeR/S dependent. J Infect Dis. 2018;218(5):809–813. doi:10.1093/infdis/jiy210
  • Zhao C, Shu X, Sun B. Construction of a gene knockdown system based on catalytically inactive (dead) Cas9 (dCas9) in Staphylococcus aureus. Appl Environ Microbiol. 2017;83(12):e00291-17. doi:10.1128/AEM.00291-17
  • Cegelski L, Marshall GR, Eldridge GR, et al. The biology and future prospects of antivirulence therapies. Nat Rev Microbiol. 2008;6(1):17–27. doi:10.1038/nrmicro1818
  • Gordon CP, Williams P, Chan WC. Attenuating Staphylococcus aureus virulence gene regulation: a medicinal chemistry perspective. J Med Chem. 2013;56(4):1389–1404. doi:10.1021/jm3014635
  • Crossley KB. Staphylococci in human disease. 2nd ed. Chichester: Wiley-Blackwell; 2010.
  • Loffler B, Hussain M, Grundmeier M, et al. Staphylococcus aureus panton-valentine leukocidin is a very potent cytotoxic factor for human neutrophils. PLoS Pathog. 2010;6(1):e1000715. doi:10.1371/journal.ppat.1000715
  • Anderson MJ, Lin YC, Gillman AN, et al. Alpha-toxin promotes Staphylococcus aureus mucosal biofilm formation. Front Cell Infect Microbiol. 2012;2:64. doi:10.3389/fcimb.2012.00064
  • Schwartz K, Syed AK, Stephenson RE, et al. Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLoS Pathog. 2012;8(6):e1002744. doi:10.1371/journal.ppat.1002744
  • Cheng AG, Kim HK, Burts ML, et al. Genetic requirements for Staphylococcus aureus abscess formation and persistence in host tissues. FASEB J. 2009;23(10):3393–3404. doi:10.1096/fj.09-135467
  • Voyich JM, Vuong C, DeWald M, et al. The SaeR/S gene regulatory system is essential for innate immune evasion by Staphylococcus aureus. J Infect Dis. 2009;199(11):1698–1706. doi:10.1086/598967
  • Flack CE, Zurek OW, Meishery DD, et al. Differential regulation of staphylococcal virulence by the sensor kinase SaeS in response to neutrophil-derived stimuli. Proc Natl Acad Sci U S A. 2014;111(19):E2037–E2045.
  • Jeong DW, Cho H, Lee H, et al. Identification of the P3 promoter and distinct roles of the two promoters of the SaeRS two-component system in Staphylococcus aureus. J Bacteriol. 2011;193(18):4672–4684. doi:10.1128/JB.00353-11
  • Mainiero M, Goerke C, Geiger T, et al. Differential target gene activation by the Staphylococcus aureus two-component system saeRS. J Bacteriol. 2010;192(3):613–623. doi:10.1128/JB.01242-09
  • Gao P, Wang YL, Villanueva I, et al. Construction of a multiplex promoter reporter platform to monitor staphylococcus aureus virulence gene expression and the identification of Usnic acid as a potent suppressor of psm gene expression. Front Microbiol. 2016;7:1344. doi:10.3389/fmicb.2016.01344
  • Gao P, Ho PL, Yan B, et al. Suppression of Staphylococcus aureus virulence by a small-molecule compound. Proc Natl Acad Sci USA. 2018;115(31):8003–8008. doi:10.1073/pnas.1720520115
  • Malachowa N, DeLeo FR. Staphylococcus aureus survival in human blood. Virulence. 2011;2(6):567–569. doi:10.4161/viru.2.6.17732
  • [van] Wamel WJ, Rooijakkers SH, Ruyken M, et al. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J Bacteriol. 2006;188(4):1310–1315. doi:10.1128/JB.188.4.1310-1315.2006
  • Pietrocola G, Nobile G, Rindi S, et al. Staphylococcus aureus manipulates innate immunity through own and host-expressed proteases. Front Cell Infect Microbiol. 2017;7:166. doi:10.3389/fcimb.2017.00166
  • Zhou C, Bhinderwala F, Lehman MK, et al. Urease is an essential component of the acid response network of Staphylococcus aureus and is required for a persistent murine kidney infection. PLoS Pathog. 2019;15(1):e1007538. doi:10.1371/journal.ppat.1007538
  • Methicillin-resistant Staphylococcus aureus (MRSA) protocols. Totowa (NJ): Humana Press; 2007 (Ji Y, editor).
  • Ohlsen K, Ziebuhr W, Koller KP, et al. Effects of subinhibitory concentrations of antibiotics on alpha-toxin (hla) gene expression of methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother. 1998;42(11):2817–2823. doi:10.1128/AAC.42.11.2817
  • Bae T, Schneewind O. Allelic replacement in Staphylococcus aureus with inducible counter-selection. Plasmid. 2006;55(1):58–63. doi:10.1016/j.plasmid.2005.05.005
  • Niesen FH, Berglund H, Vedadi M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc. 2007;2(9):2212–2221. doi:10.1038/nprot.2007.321
  • Hong SW, Choi EB, Min TK, et al. An important role of alpha-hemolysin in extracellular vesicles on the development of atopic dermatitis induced by Staphylococcus aureus. PLoS One. 2014;9(7):e100499. doi:10.1371/journal.pone.0100499
  • Petit L, Gibert M, Gillet D, et al. Clostridium perfringens epsilon-toxin acts on MDCK cells by forming a large membrane complex. J Bacteriol. 1997;179(20):6480–6487. doi:10.1128/jb.179.20.6480-6487.1997
  • Yuan S, Chu H, Huang J, et al. Viruses harness YxxO motif to interact with host AP2M1 for replication: a vulnerable broad-spectrum antiviral target. Sci Adv. 2020;6(35):eaba7910), doi:10.1126/sciadv.aba7910
  • Trott O, Olson AJ. Autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–461.
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF chimera – a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–1612. doi:10.1002/jcc.20084
  • Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995;8(2):127-134. doi:10.1093/protein/8.2.127