1,336
Views
0
CrossRef citations to date
0
Altmetric
Drug Resistance and Novel Antimicrobial Agents

Transmission of blaNDM in Enterobacteriaceae among animals, food and human

, , , , , , , , , , , , , & show all
Article: 2337678 | Received 24 Jan 2024, Accepted 27 Mar 2024, Published online: 20 Apr 2024

References

  • Guh AY, Bulens SN, Mu Y, et al. Epidemiology of carbapenem-resistant Enterobacteriaceae in 7 US communities, 2012-2013. JAMA. 2015;314:1479–1487. doi:10.1001/jama.2015.12480
  • Fu B, Yin D, Sun C, et al. Clonal and horizontal transmission of blaNDM among Klebsiella pneumoniae in children’s intensive care units. Microbiol Spectr. 2022;10:e01574–21.
  • David S, Reuter S, Harris SR, et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat Microbiol. 2019;4:1919–1929. doi:10.1038/s41564-019-0492-8
  • Köck R, Daniels-Haardt I, Becker K, et al. Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: a systematic review. Clin Microbiol Infect. 2018;24:1241–1250. doi:10.1016/j.cmi.2018.04.004
  • Wang Y, Zhang R, Li J, et al. Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production. Nat Microbiol. 2017;2:16260. doi:10.1038/nmicrobiol.2016.260
  • Zhang Q, Lv L, Huang X, et al. Rapid increase in carbapenemase-producing Enterobacteriaceae in retail meat driven by the spread of the blaNDM-5-carrying IncX3 plasmid in China from 2016 to 2018. Antimicrob Agents Chemother. 2019;63. doi:10.1128/aac.00573-19
  • Wang R, Liu Y, Zhang Q, et al. The prevalence of colistin resistance in Escherichia coli and Klebsiella pneumoniae isolated from food animals in China: coexistence of mcr-1 and bla NDM with low fitness cost. Int J Antimicrob Agents. 2018;51:739–744. doi:10.1016/j.ijantimicag.2018.01.023
  • Richardson EJ, Bacigalupe R, Harrison EM, et al. Gene exchange drives the ecological success of a multi-host bacterial pathogen. Nat Ecol Evol. 2018;2:1468–1478. doi:10.1038/s41559-018-0617-0
  • Chakradhar S. A curious connection: teasing apart the link between gut microbes and lung disease. Nat Med. 2017;23:402–404. doi:10.1038/nm0417-402
  • Economou V, Gousia P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect Drug Resist. 2015;8:49–61. doi:10.2147/IDR.S55778
  • Zhai R, Fu B, Shi X, et al. Contaminated in-house environment contributes to the persistence and transmission of NDM-producing bacteria in a Chinese poultry farm. Environ Int. 2020;139:105715.
  • Sadek M, Poirel L, Nordmann P, et al. Genetic characterisation of NDM-1 and NDM-5-producing enterobacterales from retail chicken meat in Egypt. J Glob Antimicrob Resist. 2020;23:70–71. doi:10.1016/j.jgar.2020.07.031
  • Hu F-P, Guo Y, Zhu D-M, et al. Resistance trends among clinical isolates in China reported from CHINET surveillance of bacterial resistance, 2005–2014. Clin Microbiol Infect. 2016;22:S9–S14.
  • Shen Y, Hu F, Wang Y, et al. Transmission of carbapenem resistance between human and animal NDM-positive Escherichia coli strains. Engineering. 2022;15:24–33. doi:10.1016/j.eng.2021.07.030
  • Wen R, Wei H, Zhang T, et al. Epidemiological characterisation of blaNDM-positive enterobacterales from food-producing animal farms in Southwest China. Microorganisms. 2023;11:2304. doi:10.3390/microorganisms11092304
  • Feng J, Xiang Q, Ma J, et al. Characterization of carbapenem-resistant Enterobacteriaceae cultured from retail meat products, patients, and porcine excrement in China. Front Microbiol. 2021;12:743468. doi:10.3389/fmicb.2021.743468
  • Liu Y, Zhu S, Wei L, et al. Arm race among closely-related carbapenem-resistant Klebsiella pneumoniae clones. ISME Commun. 2022;2:76. doi:10.1038/s43705-022-00163-y
  • Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–477. doi:10.1089/cmb.2012.0021
  • Wick RR, Judd LM, Gorrie CL, et al. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. Plos Comput Biol. 2017;13:e1005595. doi:10.1371/journal.pcbi.1005595
  • CLSI. Performance standards for antimicrobial susceptibility testing. 31th ed CLSI supplement M100. Wayne (PA): Clinical and Laboratory Standards Institute; 2021.
  • EUCAST. The European committee on antimicrobial susceptibility testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 10.0. 2020.
  • Inouye M, Dashnow H, Raven L-A, et al. SRST2: rapid genomic surveillance for public health and hospital microbiology labs. Genome Med. 2014;6:90. doi:10.1186/s13073-014-0090-6
  • Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–2069. doi:10.1093/bioinformatics/btu153
  • Tonkin-Hill G, MacAlasdair N, Ruis C, et al. Producing polished prokaryotic pangenomes with the panaroo pipeline. Genome Biol. 2020;21:180. doi:10.1186/s13059-020-02090-4
  • Croucher NJ, Page AJ, Connor TR, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015;43:e15–e15. doi:10.1093/nar/gku1196
  • Price MN, Dehal PS, Arkin AP. Fasttree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26:1641–1650. doi:10.1093/molbev/msp077
  • Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021: gkab301.
  • Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010;11:94–94. doi:10.1186/1471-2156-11-94
  • Lanza VF, Baquero F, Cruz Fdl, et al. AcCNET (accessory genome constellation network): comparative genomics software for accessory genome analysis using bipartite networks. Bioinform (Oxf, Engl). 2016;33:283–285.
  • Jacomy M, Venturini T, Heymann S, et al. Forceatlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS One. 2013;9:e98679. doi:10.1371/journal.pone.0098679
  • Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. Proc Int AAAI Conf Web Soc Media. 2009;3:361–362. doi:10.1609/icwsm.v3i1.13937
  • Wick RR, Schultz MB, Zobel J, et al. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics. 2015;31:3350–3352. doi:10.1093/bioinformatics/btv383
  • Shang K, Wei B, Jang H-K, et al. Phenotypic characteristics and genotypic correlation of antimicrobial resistant (AMR) Salmonella isolates from a poultry slaughterhouse and its downstream retail markets. Food Control. 2019;100:35–45. doi:10.1016/j.foodcont.2018.12.046
  • Guidi F, Centorotola G, Chiaverini A, et al. The slaughterhouse as hotspot of CC1 and CC6 listeria monocytogenes strains with hypervirulent profiles in an integrated poultry chain of Italy. Microorganisms. 2023;11:1543. doi:10.3390/microorganisms11061543
  • García-Díez J, Saraiva S, Moura D, et al. The importance of the slaughterhouse in surveilling animal and public health: a systematic review. Vet Sci. 2023;10:167. doi:10.3390/vetsci10020167
  • Agabou A, Lezzar N, Ouchenane Z, et al. Clonal relationship between human and avian ciprofloxacin-resistant Escherichia coli isolates in North-Eastern Algeria. Eur J Clin Microbiol Infect Dis. 2016;35:227–234. doi:10.1007/s10096-015-2534-3
  • Cui C-Y, Chen C, Liu B-T, et al. Co-occurrence of plasmid-mediated tigecycline and carbapenem resistance in acinetobacter spp. from waterfowls and their neighboring environment. Antimicrob Agents Ch. 2020. doi:10.1128/aac.02502-19
  • Paiva Y, Nagano DS, Cotia ALF, et al. Colistin-resistant Escherichia coli belonging to different sequence types: genetic characterization of isolates responsible for colonization, community- and healthcare-acquired infections. Rev Inst Med Trop São Paulo. 2021;63:e38.
  • Peirano G, Asensi MD, Pitondo-Silva A, et al. Molecular characteristics of extended-spectrum β-lactamase-producing Escherichia coli from Rio de Janeiro, Brazil. Clin Microbiol Infect. 2011;17:1039–1043. doi:10.1111/j.1469-0691.2010.03440.x
  • Tang B, Ma Y, He X, et al. Similar antimicrobial resistance of Escherichia coli strains isolated from retail chickens and poultry farms. Foodborne Pathog Dis. 2021;18:489–496. doi:10.1089/fpd.2021.0019
  • Yang M, Xu G, Ruan Z, et al. Genomic characterization of a multidrug-resistant Escherichia coli isolate Co-carrying blaNDM-5 and blaCTX-M-14 genes recovered from a pediatric patient in China. Infect Drug Resist. 2022;15:6405–6412. doi:10.2147/IDR.S388797
  • Ma T, Fu J, Xie N, et al. Fitness cost of blaNDM-5-carrying p3R-IncX3 plasmids in wild-type NDM-free Enterobacteriaceae. Microorganisms. 2020;8:377. doi:10.3390/microorganisms8030377
  • Wang Y, Tong M-K, Chow K-H, et al. Occurrence of highly conjugative IncX3 epidemic plasmid carrying blaNDM in Enterobacteriaceae isolates in geographically widespread areas. Front Microbiol. 2018;9:2272. doi:10.3389/fmicb.2018.02272
  • Yang QE, Ma X, Zeng L, et al. Interphylum dissemination of NDM-5-positive plasmids in hospital wastewater from Fuzhou, China: a single-centre, culture-independent, plasmid transmission study. Lancet Microbe. 2023. doi:10.1016/s2666-5247(23)00227-6
  • Lopatkin AJ, Meredith HR, Srimani JK, et al. Persistence and reversal of plasmid-mediated antibiotic resistance. Nat Commun. 2017;8:1689. doi:10.1038/s41467-017-01532-1