33
Views
16
CrossRef citations to date
0
Altmetric
Articles

Silica-coated nickel oxide a core-shell nanostructure: synthesis, characterization and its catalytic property in one-pot synthesis of malononitrile derivative

, , , &
Pages 103-117 | Received 28 Dec 2016, Accepted 14 Feb 2017, Published online: 01 Mar 2017

References

  • J. L. Gunjakar, A. M. More, C. D. Lokhande. Chemical deposition of nanocrystalline nickel oxide from urea containing bath and its use in liquefied petroleum gas sensor. Sensors Actuators B: Chemical, 2008, 131, 356–36.
  • S. Rakshit, S. Ghosh, S. Chall, S. S. Mati, S. P. Moulik, S. C. Bhattacharya. Controlled synthesis of spin glass nickel oxide nanoparticles and evaluation of their potential antimicrobial activity: A cost effective and eco-friendly approach. RSC Adv, 2013, 3, 19348–19356.
  • D. J. Stacchiola, S. D. Senanayake, P. Liu, J. A. Rodriguez. Fundamental studies of well-define surfaces of mixed-metal oxide: special properties of MOx/TiO2 (110) (M= V, Ru, Ce or W). Chem. Rev, 2013, 113, 4373–4390.
  • L. Zbroniec, A. Martucci. Optical CO gas sensing using nanostructured NiO/SiO2 nanocomposites fabricated by PLD and sol-gel methods. J. Appl. Phys. A, 2004, 79, 1303–1305.
  • M. I. Qudir, J. D. Scholten, J. Dupont. TiO2 nanomaterials: Highly active catalyst for the oxidation hydrocarbon. J. Molecular Catal. A: Chemical, 2014, 383-384, 225–230.
  • M. E. David. Ordered porous materials for emerging applications. Nature, 2002, 417, 813–21.
  • X. Gao, H. Mao, M. Lu, J. Yang, B. Li. Facile synthesis route to NiO-SiO2 intercalated clay with ordered porous structure: Intra gallery interfacially controlled functionalization using nickel-ammonia complex for deep desulfurization. Microporous Mesoporous Mater, 2012, 148, 25–33.
  • H. Cui, W. Ren. Template-free sol-gel synthesis of microporous NiO-SiO composite with high surface area and narrow pore size distribution. J. Sol-Gel Sci. Technol, 2008, 47, 360–364.
  • S. Vaidya, K. V. Ramanunjachary, S. E. Lofland, A. K. Ganguli. Synthesis of homogeneous NiO@SiO2 core-shell nanostructures and the effect of shell thickness on the magnetic properties. Crystal Growth Design, 2009, 9, 1666–1670.
  • M. F. Casula, A. Corrias, G. Paschina. Nickel oxide-silica and nickel-silica aerogel and xerogel nanocomposite materials. J. Mater. Res, 2000, 15, 2187–2194.
  • H. Yang, Q. Lu, F. Gao, Q. Shi, Y. Yan, F. Zhang, S. Xie, B. Tu, D. Zhao. One-step synthesis of highly ordered mesoporous silica monolith with metal oxide nanocrystals in their channel. Adv. Funct. Mater, 2005, 15, 1377–1384.
  • S. R. Krishnakumar, M. Liberati, C. Grazioli, M. Veronese, S. Turchini, P. Luches, S. Valeri, C. Carbone. Magnetic linear dichroism studies of in situ grown NiO thin films. J. Magnetism Magnetic Mater, 2007, 310, 8–12.
  • T. Nathan, A. Aziz, A. F. Noor, S. R. S. Prabaharan. Nanostructured NiO for electrochemical capacitors: synthesis and electrochemical properties. J. Solid State Electrochem, 2008, 12, 1003–1009.
  • X. Li, G. Yuan, A. Brown, A. Westwood, R. Brydson, B. Rand. The removal of encapsulated catalyst particles from carbon nanotubes using molten salts. Carbon, 2006, 44, 1699–1705.
  • L. Li, E.A. Gibson, P. Qin, G. Boschloo, M. Gorlov, A. Hagfeldt, L. Sun. Double-Layered NiO photocathodes for p-type DSSCs with record IPCE. Adv. Mater, 2010, 22, 1759–1762.
  • Y. Nishimura, F. Nakajima. Japan Kokai Tokkyo Koho Patent JP 49041290. 1974.
  • G. Bai, H. Dai, J. Deng, Y. Liu, K. Ji. Porous NiO nanoflowers and nanourchins: Highly active catalysts for toluene combustion. Catal. Commun, 2012, 27, 148–153.
  • J. A. Tanna, R. G. Chaudhary, N. V. Gandhare, A. R, Rai, H. D. Juneja, Histidine capped ZnO nanoparticles: an efficient synthesis, spectral characterization, and effective antibacterial activity. Bio. Nano Sci, 2015, 5, 123–134.
  • J. A. Tanna, R. G. Chaudhary, N. V. Gandhare, A. R. Rai, S. Yerpude, H. D. Juneja. Copper nanoparticles catalyzed an efficient one-pot multicomponent synthesis of chromenes derivatives and its antibacterial activity. J. Expt. Nanosci, 2016, 11, 884–905.
  • R. G. Chaudhary, J. A. Tanna, N. V. Gandhare, H. D. Juneja. Synthesis of nickel nanoparticles: Microscopic investigation, an efficient catalyst and effective antibacterial activity. Adv. Mater. Lett, 2015, 6, 990–998.
  • J. A. Tanna, R. G. Chaudhary, N. V. Gandhare, A. R. Rai, H. D. Juneja. Nickel oxide nanoparticles: Synthesis, characterization and recyclable catalyst. Int. J. Scientific Eng. Res, 2015, 6, 93–99.
  • J. Safaei-Ghomi, S. Paymard-Samani. Facile and rapid synthesis of 5-substituted 1h-tetrazoles via a multicomponent domino reaction using nickel (II) oxide nanoparticles as catalyst. Chem. Heterocycl Comp, 2015, 50, 1567–1574.
  • S. Z. Khan, Y. Yuan, A. Abdolvand, M. Schmidt, P. Crouse, L. Li, Z. Liu, M. Sharp, K. G. Watkins. Generation and characterization of NiO nanoparticles by continuous wave fiber laser ablation in liquid. J. Nanopart. Res, 2009, 11, 1421–1427.
  • I. A. Abdelhamid, M. H. Mohamed, A. M. Abdelmoniem, S. A. S. Ghozlan. DBU-Catalyzed, a facile and efficient method for synthesis of spirocyclic 2-oxindole derivatives with incorporated 6-amino-4H-pyridazines and fused derivatives via [3+3] atom combination. Tetrahedron, 2009, 65, 10069–10073.
  • R. Pagadala, D. R. Kommidi, S. Rana, S. Maddila, B. Moodley, N. A. Koorbanally, S. B. Jonnalagadda. Multicomponent synthesis of pyridines via diamines functionalized mesoporous ZrO2 domino intramolecular tandem Michael type addition. RSC Adv, 2015, 5, 5627–5632.
  • R. G. Redkin, L. A. Shemchuk, V. P. Chernykh, O. V. Shishkin, S. V. Shishkina. Synthesis and molecular structure of spirocyclic 2-oxindole derivatives of 2-amino-4H-pyran condensed with the pyrazolic nucleus. Tetrahedron, 2007, 63, 11444–11450.
  • J. A. Tanna, R. G. Chaudhary, N. V. Gandhare, H. D. Juneja. Alumina Nanoparticle: A new and reusable catalyst for synthesis of dihydropyrimidinone derivatives. Adv. Mater. Lett, 2016, 7, 933–938.
  • L. A. Shemchuk, V. P. Chernykh, R. G. Redkin. Synthesis of fused 2-amino-3-R-spiro-[indole-3,4-pyran]-2(1H)-ones. Russ. J. Org. Chem, 2008, 44, 1789–1794.
  • M. Chakrabarty, R. Mukherjee, S. Arima, Y. Harigaya. The reaction of isatins with active methylene compounds on neutral alumina: formation of Knoevenagel condensates and other interesting products. Heterocycles, 2009, 78, 139–149.
  • A. Dandia, H. Taneja, R. Gupta, S. Paul. An Efficient procedure for the synthesis of spiro (3H-indole-3,4′ (1′H) pyrano[2,3-C]pyrrole]-5′-carbonitriles using solid inorganic supports and microwave activation. Synth. Commun, 1999, 29, 2323–2335.
  • R. G. Chaudhary, P. Ali, J. A. Tanna, N. V. Gandhare, H. D. Juneja. Thermal decomposition kinetics of some transition metal coordination polymers of fumaroyl bis (paramethoxyphenylcarbamide) using DTG/DTA techniques. Arabian J. Chem, 2016, doi.10.1016/j.arabjc.2016.03.008
  • R. G. Chaudhary, N. V. Gandhare, H. D. Juneja. Evaluation of kinetic parameter from TG/DTA data of chelate polymer compounds of isophthaoyl bis (paramethoxyphenylcarbamide). J. Chin. Adv. Mater. Soc, 2013, 1, 305–316.
  • D. V. Demchuk, M. N. Elinson, G. I. Nikishin. Knoevenagel condensation of isatins with malononitrile. Mendeleev Commun, 2011, 21, 224–225.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.