90
Views
6
CrossRef citations to date
0
Altmetric
Articles

Conjoint experimental–theoretical evaluation of pyrone-salicylic acid hydrazide copper(II) Schiff base complexes: their synthesis, SOD and electrochemical fronts

, &
Pages 55-80 | Received 09 Sep 2017, Accepted 14 Oct 2017, Published online: 01 Dec 2017

References

  • E. I. Solomon, R. G. Hadt. Recent advances in understanding blue copper proteins. Coord. Chem. Rev, 2011, 255, 774–789.
  • Y. Lu. (Eds: L Que, Jr., W. B. Tolman), Bio-coordination Chemistry. Elsevier Ltd., 2004, Vol. 8, 91–122.
  • S. F. Miller, G. T. Babcock. Heme/copper terminal oxidases. Chem. Rev, 1996, 96, 2889–2907.
  • E. Kim, E. E. Chufán, K. Kamaraj, K. D. Karlin. Synthetic models for heme−copper oxidases. Chem. Rev, 2004, 104, 1077–1133.
  • S. Yoshikawa, K. Muramoto, K. Shinzawa-Itoh. The O2 reduction and proton pumping gate mechanism of bovine heart cytochrome c oxidase. Biochim. Biophys. Acta Bioenerg, 2011, 1807, 1279–1286.
  • E. Gaggelli, H. Kozlowski, D. Valensin, G. Valensin. Copper homeostasis and neurodegenerative disorders (Alzheimer's, prion, and Parkinson's diseases and amyotrophic lateral sclerosis). Chem. Rev, 2006, 106, 1995–2044.
  • M. Rezaeivala, H. Keypour. Schiff base and non-Schiff base macrocyclic ligands and complexes incorporating the pyridine moiety – the first 50 years. Coord. Chem. Rev, 2014, 280, 203–253.
  • P. D. Frischmann, J. Jiang, J. K.-H. Hui, J. J. Grzybowski, M. J. MacLachlan. Reversible− irreversible approach to Schiff base macrocycles:  access to isomeric macrocycles with multiple salphen pockets. Org. Lett, 2008, 10, 1255–1258.
  • A. Decortes, A. M. Castilla, A. W. Kleij. Salen-complex-mediated formation of cyclic carbonates by cycloaddition of CO2 to epoxides. Angew. Chem. Int. Ed, 2010, 49, 9822–9837.
  • T. Rosu, E. Pahontu, M. Reka-Stefana, C. Ilies, R. Georgescu, S. Shova, A. Gulea. Synthesis, structural and spectral studies of Cu(II) and V(IV) complexes of a novel Schiff base derived from pyridoxal. Antimicrobial activity. Polyhedron, 2012, 31, 352–360.
  • C. M. Che, C.-C. Kwok, S.-W. Lai, A. F. Rausch, W. J. Finkenzeller, N. Zhu, H. Yersin. Photophysical properties and OLED applications of phosphorescent platinum(II) Schiff base complexes. Chem. Eur. J, 2010, 16, 233–237.
  • S. Righetto, S. Di Bella. Synthesis, characterization, optical absorption/fluorescence spectroscopy, and second-order nonlinear optical properties of aggregate molecular architectures of unsymmetrical Schiff-base zinc(II) complexes. Dalton Trans, 2014, 43, 2168.
  • C. R. Nayar, R. Ravikumar. Review: second order nonlinearities of Schiff bases derived from salicylaldehyde and their metal complexes. J. Coord. Chem, 2014, 67, 1–16.
  • M. Cindric, V. Vrdoljak, T. Kajfez, P. Novak, A. B. Saranovic, N. Strukan, B. Kamenar. Synthesis and characterization of new dinuclear complexes of molybdenum(V) with β′-hydroxy-β-enaminones. Inorg. Chim. Acta, 2002, 328, 23–32.
  • M. Rangel, A. Tamura, C. Fukushima, H. Sakurai. In vitro study of the insulin-like action of vanadyl-pyrone and -pyridinone complexes with a VO(O4) coordination mode. J. Biol. Inorg. Chem, 2001, 6, 128–132.
  • P. Comba. The relation between ligand structures, coordination stereochemistry, and electronic and thermodynamic properties. Coord. Chem. Rev, 1993, 123, 1–48.
  • N. Raman, R. Mahalakshmi, T. Arun, S. Packianathan, R. Rajkumar. Metal based pharmacologically active complexes of Cu(II), Ni(II) and Zn(II): Synthesis, spectral, XRD, antimicrobial screening, DNA interaction and cleavage investigation. J. Photochem. Photobiol. B: Biology, 2014, 138, 211–222.
  • F. Zouchoune, S. M. Zendaoui, N. Bouchakri, A. Djedouani, B. Zouchoune. Electronic structure and vibrational frequencies in dehydroacetic acid (DHA) transition-metal complexes: a DFT study. J. Mol. Struct.: THEOCHEM, 2010, 945, 78–84.
  • S. Kannan, M. Sivagamasundari, R. Ramesh, Yu Liu. Ruthenium(II) carbonyl complexes of dehydroacetic acid thiosemicarbazone: synthesis, structure, light emission and biological activity. J. Organomet. Chem, 2008, 693, 2251–2257.
  • D. M. Fouad, N. M. Ismail, M. A. El-Gahami, S. A. Ibrahim. Kinetics of the substitution of dehydroacetic acid in tris (dehydroacetato) Fe(III) complex by 8-hydroxyquinoline, di- and tetra-hydroxyquinone. Spectrochim. Acta Part A, 2007, 67, 564–567.
  • J. Patra, M. K. Sahoo, B. B. Panda. Salicylic acid triggers genotoxic adaptation to methyl mercuric chloride and ethyl methane sulfonate, but not to maleic hydrazide in root meristem cells of Allium cepa L. Mutat. Res, 2005, 581, 173–180.
  • S. B. Chattaraj, K. Sharma, A. Chakrabortty, S. C. Lahiri. Spectrophotometric, FTIR and theoretical studies of the charge-transfer complexes between isoniazid (pyridine-4-carboxylic acid hydrazide) and the acceptors (p-chloranil, chloranilic acid and tetracyanoethylene) in acetonitrile, their association constants, thermodynamic properties and other related properties. Spectrochim. Acta Part A, 2012, 95, 637–647.
  • Y. Fu, A. Manthiram. Nafion–Imidazole–H3PO4 composite membranes for proton exchange membrane fuel cells. J. Electrochem. Soc, 2007, 154, B8–B12.
  • H. L. Lin, T. H. Tang, C. R. Hu, T. L. Yu. Poly(benzimidazole)/silica-ethyl-phosphoric acid hybrid membranes for proton exchange membrane fuel cells. J. Power Sour, 2012, 201, 72–80.
  • M. M. Ramla, M. A. Omar, H. I., El-Diwani, M. A. M El-Khamry. Synthesis and antitumor activity of 1-substituted-2-methyl-5-nitrobenzimidazoles. Bioorg. Med. Chem, 2006, 14, 7324–7332.
  • J. Valdez, R. Cedillo, A. H. Campos, L. Yepez, F. H. Luis, G. N. Vazquez, A. Tapia, R. Cortez, R. Hernandes, R. Castillo. Synthesis and antiparasitic activity of 1H-benzimidazole derivatives. Bioorg. Med. Chem. Lett, 2002, 12, 2221–2224.
  • S. Macholl, D. Tietze, G. Buntkowsky. NMR crystallography of amides, peptides and protein–ligand complexes.Cryst. Eng. Comm, 2013, 15, 8627–8638.
  • A. F. Miller. (Eds: L. J. Que, W. Tolman), Comprehensive Coordination Chemistry II, Coordination Chemistry in the Biosphere and Geosphere. Elsevier Ltd., 2003, Vol. 8, 479–506.
  • S. A. Hulea. An Introduction to Vitamins, Minerals and Oxidative Stress. Boca Raton, Florida: Universal Publisher, 2008, 105–135.
  • C. Schöneich. Radical-Based Damage of Sulfur-Containing Amino Acid Residues, Encyclopedia of Radicals in Chemistry, Biology and Materials. John Wiley & Sons Ltd., 2012, 1–16.
  • C. Szabo. Multiple pathways of peroxynitrite cytotoxicity. Toxicol. Lett, 2003, 140–141, 105–112.
  • C. Szabo, H. Ischiropoulos, R. Radi. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug. Discov, 2007, 6, 662–680.
  • I. Fridovich. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem, 1995, 64, 97–112.
  • I. Bertini, S. Magnani, M.-S. Viezzoli. (Ed: S.A.G.), Advances in Inorganic Chemistry. Academic Press, 1998, Structure and properties of copper–zinc superoxide dismutases, 127–250.
  • I. A. Abreu, D. E. Cabelli. Superoxide dismutases—a review of the metal-associated mechanistic variations. Biochim Biophys. Acta, 2010, 1804, 263–274.
  • H. A. De Abreu, L. Guimaraes, H. A. Duarte. Density-functional theory study of Iron(III) hydrolysis in aqueous solution. J. Phys. Chem. A, 2006, 110, 7713–7718.
  • A. D. Becke. Density functional calculations of molecular bond energies. J. Chem. Phys, 1986, 84, 4524.
  • J. P. Perdew. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B, 1986, 33, 8822.
  • J. P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett, 1996, 77, 3865.
  • N. Godbout, D. R. Salahub, J. Andzelm, E. Wimmer. Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation. Can. J. Chem. Rev. Can. De Chim, 1992, 70, 560.
  • A. M. Koster, R. Flores-Moreno, J. U. Reveles. Calculation of exchange-correlation potentials with auxiliary function densities. J. Chem. Phys, 2004, 121, 681.
  • J. Mohammad Mir, N. Jain, P. S. Jaget, R. C. Maurya. Density Functionalized [RuII(NO)(Salen)(Cl)] Complex: Computational Photodynamics and In Vitro Anticancer Facets. Photodiagnosis and Photodynamic Therapy, 2017, 19, 363–374.
  • R. C. Bingham, M. J. S. Dewar, D. H. Lo. Ground states of molecules. XXV. MINDO/3. Improved version of the MINDO semiempirical SCF-MO method. J. Am. Chem. Soc, 1975, 97, 1285–1293.
  • M. J. S. Dewar, W. Thiel. Ground states of molecules. 38. The MNDO method. Approximations and parameters. J. Am. Chem. Soc, 1977, 99, 4899–4907.
  • R. C. Maurya, B. A. Malik, J. M. Mir, P.K. Vishwakarma. Oxidovanadium(IV) complexes involving dehydroacetic acid and β-diketones of bioinorganic and medicinal relevance: their synthesis, characterization, thermal behavior and DFT aspects. J. Mol. Struct, 2015, 1083, 343–356.
  • R. C. Maurya, B. A. Malik, J. M. Mir, P. K. Vishwakarma, D. K. Rajak, N. Jain. Nickel(II) complexes of ONS donor Schiff base ligands: synthesis, combined DFT-experimental characterization, redox, thermal, and in vitro biological investigation. J. Coord. Chem, 2015, 68, 2902–2922.
  • A. I. Vogel. A Text Book of Qualitative Inorganic Analysis. ELBS, Longman Green and Co. Ltd., 1963, 498.
  • Z. A. Siddiqi, P. K. Sharma, M. Shahid, M. Khalid, S. Kumar. Synthesis, spectral characterizations and biological studies of transition metal mixed ligand complexes: X-ray crystal structures of [Cu(oda)(Bipy)(H2O)]·4H2O and [VO(oda)(Bipy)]·2H2O. J. Mol. Struct, 2011, 994, 295–301.
  • A. D. Becke. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys, 1993, 98, 5648–5652.
  • C. Lee, W. Yang, R. C. Parr. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1998, 37, 785–789.
  • R. C. Maurya, P. K. Vishwakarma, J. M. Mir, D. K. Rajak. Oxidoperoxidomolybdenum (VI) complexes involving 4-formyl-3-methyl-1-phenyl-2-pyrazoline-5-one and some β-diketoenolates. J. Therm. Anal. Calori, 2016, 124, 57–70.
  • J. M. Mir, D. K. Rajaki, R. C. Maurya. Bacterial sensitivity and SOD behavior of N-pyrone glucosamine Schiff base Fe (III) complex: Conjoint experimental-DFT evaluation.J. Coordin. Chem, 2017, 70(18), 3199–3216.
  • J. Jayabharathi, V. Thanikachalam, M. V. Perumal. Characterization, photophysical and DFT calculation study on 2-(2,4-difluorophenyl)-1-(4-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline ligand. Spectrochim. Acta, 2012, 95, 614–621.
  • M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox. GAUSSIAN 09 (Revision C.01), Gaussian, Inc., 2010.
  • P. K. Vishwakarma, J. M. Mir, R. C. Maurya. Pyrone-based Cu(II) complexes, their characterization, DFT based conformational drift from square planar to square pyramidal geometry and biological activities. J. Chem. Sci., 2016, 128, 511–522.
  • R. C. Maurya, P. Sharma, D. Sutradhar. Synthesis, Magnetic, and Spectral Studies of Some Mixed‐Ligand Complexes of Copper (II) Involving Diphenic Acid and Pyridine or Aniline Derivatives.Synth. React. Inorg. Met. Org. Chem, 2003, 33, 669–682; S. Dasgupta, S. Khatua, V. Bertolasi, M. Bhattacharjee. Polyhedron, 2007, 26, 2574.
  • R. N. Patel, V. L. N. Gundla, D. K. Patel. Synthesis, structure and properties of some copper(II) complexes containing an ONO donor Schiff base and substituted imidazole ligands. Polyhedron, 2008, 27, 1054–1060.
  • R. N. Patel, K. K. Shukla, A. Singh, M. Choudhary, U. K. Chauhan, S. Dwivedi. Copper(II) complexes as superoxide dismutase mimics: synthesis, characterization, crystal structure and bioactivity of copper(II) complexes. Inorg. Chim. Acta, 2009, 362, 489–498.
  • R. G. Bhirud, T. S. Shrivastava. Synthesis, characterization and superoxide dismutase activity of some ternary copper(II) dipeptide-2,2′-bipyridine, 1,10-phenanthroline and 2,9-dimethyl-1,10-phenanthroline complexes. Inorg. Chim. Acta, 1991, 179, 125–131.
  • R. G. Bhirud, T. S. Shrivastava. Superoxide dismutase activity of Cu(II)2(aspirinate)4 and its adducts with nitrogen and oxygen donors. Inorg. Chim. Acta, 1990, 179, 121–125.
  • R. N. Patel, N. Singh, K. K. Shukla, V. L. N. Gundla. E.S.R., magnetic, electronic and superoxide dismutase studies of imidazolate-bridged Cu(II)–Cu(II) complexes with ethylenediamine as capping ligand. Spectrochim. Acta Part A, 2005, 61, 1893–1897.
  • G. Glugliarelli, S. Cannistraro. Monte Carlo simulation of the electron paramagnetic resonance spectrum displayed by copper ceruloplasmin at 77 K. Nuovo Cimento, 1984, 4, 194–205.
  • N. Singh, K. K. Shukla, R. N. Patel, U. K. Chauhan, R. Shrivastava. E.S.R., magnetic, optical and biological (SOD and antimicrobial) studies of imidazolate bridged CuII–ZnII and CuII–NiII complexes with tris(2-amino ethyl)amine as capping ligand: a plausible model for superoxide dismutase. Spectrochim. Acta A, 2003, 59, 3111–3122.
  • Z.A. Siddiqi, M. Shahid, M. Khalid, S. Kumar. Antimicrobial and SOD activities of novel transition metal ternary complexes of iminodiacetic acid containing α-diimine as auxiliary ligand. Eur. J. Med. Chem, 2009, 44, 2517–2522.
  • S. Gupta, A. Mukherjee, M. Nethaji, A. R. Chakravarty. Effect of a pentadentate Schiff base on the helical supramolecular structures of (μ-alkoxo)(μ-carboxylato)dicopper(II) complexes. Polyhedron, 2005, 24, 1922–1928.
  • A. W. Addison, T. N. Rao, J. Rudijk, J. Van Rijn, G. C. Verschoor. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc. Dalton Trans, 1984, 1349–1356. doi: 10.1039/DT9840001349
  • R. N. Patel, N. Singh, V. L. N. Gundla. Synthesis, structure and properties of ternary copper(II) complexes of ONO donor Schiff base, imidazole, 2,2′-bipyridine and 1,10-phenanthroline. Polyhedron, 2006, 25, 3312–3318.
  • A. E. Reed, L. A. Curtiuss, F. Weinhold. Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem. Rev, 1988, 88, 899–926.
  • Y. Yang, W. J. Zhang, X. M. Gao. Blue-shifted and red-shifted hydrogen bonds: theoretical study of the CH3CHO· · ·HNO complexes. Int. J. Quantum Chem, 2006, 106, 1199–1207.
  • D. Shoba, S. Periandy, M. Karabacak, S. Ramalingam. Vibrational spectroscopy (FT-IR and FT-Raman) investigation, and hybrid computational (HF and DFT) analysis on the structure of 2,3-naphthalenediol. Spectrochim. Acta A, 2012, 83, 540–552.
  • J. M. Mir, F. A. Itoo. Experimental-DFT interface of hydrogen bonding description of 1: 10 methanol-water solution.J. Molec. Liqu, 2017, 247, 1–5.
  • C. J. Brabec, N. S. Sariciftci, J. C. Hummelen. Plastic solar cells.Adv. Funct. Mater, 2001, 15–26.
  • E. E. Ebenso, T. Arslan, F. Kandemirli, I. Love, C. Ogretir, M. Saracoglu, S. A. Moron. Theoretical studies of some sulphonamides as corrosion inhibitors for mild steel in acidic medium. Int. J. Quant. Chem, 2010, 110, 2614–2636.
  • R. G. Pearson. The principle of maximum hardness. Acc. Chem. Res., 1993, 26, 250–255.
  • T. Karthick, V. Balachandran, S. Perumal, A. Nataraj. Rotational isomers, vibrational assignments, HOMO–LUMO, NLO properties and molecular electrostatic potential surface of N-(2 bromoethyl) phthalimide. J. Mol. Struct, 2011, 1005, 202–213.
  • R. J. Xavier, P. Dinesh. Spectroscopic (FTIR, FT-Raman, 13C and 1H NMR) investigation, molecular electrostatic potential, polarizability and first-order hyperpolarizability, FMO and NBO analysis of 1-methyl-2-imidazolethiol. Spectrochim Acta A, 2014, 118, 999–1011.
  • H. Dammak, H. Feki, H. Boughzala, Y. Abid. Crystal structure, vibrational spectra and non-linear optical properties of diethylenetriammonium hexabromobismuthate: C4H16N3BiBr6. Spectrochim Acta A, 2015, 137, 1235–1243.
  • D. A. Kleinman. Nonlinear dielectric polarization in optical media. Phys. Rev, 1962, 126, 1977–1979.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.