11
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Real Time Measurement of Biosorption Efficiency of Chemically Modified Coconut Powder for Pb(II) and Cd(II) Using Open Circuit Potential

, , , &
Pages 140-148 | Received 05 Apr 2015, Accepted 17 Jun 2015, Published online: 19 Nov 2015

References

  • Vijayaraghavan, K., Jegan, J.R., Palanivelu, K. and Velan, M. (2004). Copper removal from aqueous solution by marine green alga Ulva reticulate. Electronic Journal of Biotechnology, 7: 61–71.
  • Rajawat, D.S., Kardam, A., Srivastava, S. and Satsangee, S.P. (2013). Nanocellulosic fiber-modified carbon paste electrode for ultratrace determination of Cd (II) and Pb (II) in aqueous solution. Environmental Science and Pollution Research, 20: 3068–3076. doi: 10.1007/s11356-012-1194-4
  • Rajawat, D.S., Kardam, A., Srivastava, S. and Satsangee, S.P. (2013). Adsorptive Stripping Voltammetric Technique for Monitoring of Mercury Ions in Aqueous Solution Using Nano Cellulosic Fibers Modified Carbon Paste Electrode. National Academy Science Letters, 36: 181–189. doi: 10.1007/s40009-013-0116-4
  • Pino, G.H., Mesquita, L.M.S., Torem M.L. and Pinto, G.A.S. (2006). Biosorption of cadmium by green coconut shell powder. Mineral Engineering, 19: 380–387. doi: 10.1016/j.mineng.2005.12.003
  • Bai, R.S. and Abraham, T.E. (2002). Studies on enhancement of Cr (VI) biosorption by chemically modified biomass of Rhizopus nigricans. Water Research, 36(5): 1224–36.
  • Rubin, E., Rodriguez, P., Herrero, R., Cremades, J., Barbara, I. and Vicente, M.S. (2005). Removal of methylene blue from aqueous solutions using as biosorbentn Sargassummuticum: an invasive macroalga. European Journal of Chemical technology and Biotechnology, 80: 291–298. doi: 10.1002/jctb.1192
  • Hepsibha, P. and Judia, H.S.V. (2012). A Comparative Study on the Efficiency of Micro-organisms in Biosorption of Aluminium and Detoxification of Mercury. Advanced BioTechnology, 11(7): 22–25.
  • Chavan, A.A., Li, H., Scarpellini A., Marras, S., Manna L., Athanassiou, A. and Fragouli D. (2015) Elastomeric Nanocomposite Foams for the Removal of Heavy Metal Ions from Water. ACS Applied Materials and Interfaces, 7(27): 14778–14784. doi: 10.1021/acsami.5b03003
  • Fadl, F.I.A. and Mohdy, H.L. (2015). Removal of heavy metal ions from aqueous solutions by radiation-induced chitosan/(acrylamidoglycolic acid-co-acrylic acid) magnetic nanopolymer. Polymer Engineering & Science, 55(6): 1441–1449. doi: 10.1002/pen.24091
  • Ajmal, M., Siddiq, M., Aktas, N. and Sahiner N. (2015). Magnetic Co–Fe bimetallic nanoparticle containing modifiable microgels for the removal of heavy metal ions, organic dyes and herbicides from aqueous media. RSC Advances, 5: 43873–43884 doi: 10.1039/C5RA05785J
  • Chandra, K., Kamala, C.T., Chary, N.S. and Anjaneyulu, Y. (2003). Removal of heavy metals using a plant biomass with reference to environmental control. International Journal of Mineral Processesing, 68: 37–45. doi: 10.1016/S0301-7516(02)00047-9
  • Reddy, D.H.K., Seshaiah, K., Reddy, A.V.R. and Lee. S.M. (2012). Optimization of Cd(II), Cu(II) and Ni(II) biosorption by chemically modified Moringa oleifera leaves powder. Carbohydrate Polymers, 88(3): 1077–1086. doi: 10.1016/j.carbpol.2012.01.073
  • Mahajan G. and Sud, D. (2011). Kinetics and equilibrium studies of cr(vi) metal ion remediation by arachis hypogea shells: a green approach. BioResources. 6(3): 3324–3338.
  • Srivastava, S., Kumar, R.R. and Kardam A. (2013). Efficient arsenic depollution in water using modified maize powder. Environmental Chemistry Letters; 11: 47–53. doi: 10.1007/s10311-012-0376-0
  • Raj, K.R., Kardam, A. and Srivastava, S. (2013). Development of polyethylenimine modified Zea mays as a high capacity biosorbent for the removal of As (III) and As (V) from aqueous system. International Journal of Mineral Processing, 122: 66–70. doi: 10.1016/j.minpro.2013.02.010
  • Reddy, D.H.K. and Lee, S.M. (2013). Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Advances in Colloid and Interface Science, 201–202: 68–93.
  • Ahalya, N., Kanamadi, R.D. and Ramachandra, T.V. (2005). Biosorption of chromium (VI) from aqueous solutions by the husk of Bengal gram (Cicerarientinum). Electronic Journal of biotechnology, 8: 258–264. doi: 10.2225/vol8-issue3-fulltext-10
  • Gaur, N., Flora, G., Yadav, M. and Tiwari, A. (2014). A review with recent advancements on bioremediation-based abolition of heavy metals. Environmental Science: Processes and Impacts, 16: 180–193.
  • Zhu, L. and Ketola, T. (2012). Microalgae production as a biofuel feedstock risks and challenges. International Journal of Sustainable Development & World Ecology. 19(3): 268–274. doi: 10.1080/13504509.2011.636083
  • Krishnani, K.K., Meng, X., Dupont, L. (2009). Metal ions binding onto lignocellulosic biosorbent. Journal of Environmental Science and Health. Part A: Toxic/Hazardous Substances and Environmental Engineering, 44(7): 688–699.
  • Raj, K.R., Kardam, A., Arora, J.K., Srivastava, S. and Srivastava, M.M. (2013). Adsorption behavior of dyes from aqueous solution using agricultural waste: modeling approach. Clean Technologies and Environmental Policy, 15(1): 73–80. doi: 10.1007/s10098-012-0480-7
  • Beatty, S.T., Fischer, R.J., Hagers, D.L. and Rosenberg, E. (1999). A Comparative Study of the Removal of Heavy Metal Ions from Water Using a Silica”Polyamine Composite and a Polystyrene Chelator Resin. Industrial and Engineering Chemistry Research, 38(11): 4402–4408. doi: 10.1021/ie9903386
  • Shankar, P., Gomathi, T., Vijayalakshmi, K., and Sudha, P.N. (2014). Comparative studies on the removal of heavy metals ions onto cross linked chitosan-g-acrylonitrile copolymer. International Journal of Biological Macromolecules 67: 180–8. doi: 10.1016/j.ijbiomac.2014.03.010
  • Silva, R.M., Manso, J.P., Rodrigues, J.R., Lagoa, R.J. (2008). A comparative study of alginate beads and an ion-exchange resin for the removal of heavy metals from a metal plating effluent. Journal of Environmental Science and Health. Part A: Toxic/Hazardus substances Environmental Engineering, 43(11): 1311–7.
  • Ahadi, M.M. and Attar, M.M. (2007). OCP Measurement: A Method to Determine CPVC. Scientia Iranica, 14: 369–372.
  • Podlovchenko, B.I., Gladysheva, T.D. (2001). Variations in the Total Charge and the Open-Circuit Potential during the CO Adsorption on a Platinum Electrode in Chloride Solutions. Russian Journal of Electrochemistry 37: 771. doi: 10.1023/A:1016710332234
  • Podlovchenko, B.I., Gladysheva, T.D. and Kolyadko, E.A. (2003). Experimental check-up of the relationship between transients of current and open circuit potential for strong adsorption of neutral species and ions on a hydrogen electrode. Journal of Electroanalytical Chemistry 552: 85. doi: 10.1016/S0022-0728(02)01473-0
  • Takabayashi, S., Kato, N. and Nakato, Y. (2006). Negative Shifts in the Flatband Potential by Adsorption of Iodide Ions on Surface-Alkylated and Pt Nanodotted n-Si(111) Electrodes for Improvement of Solar Cell Characteristics Journal of Electrochemical Society. 153: E38–43.
  • Dong, G., Zhu, Y., Tian, H., Li, F., Xin, S. and Qin. Y (2015). Solid phase microextraction and determination of dichromate in aqueous solution based on pine needle powder-modified carbon paste electrode by potentiometry. Research on Chemical Intermediates. 41(2): 1191–1201.
  • Zhou, H., Park, Z.H., Fan, F.F. and Bard, A.J. (2012). Observation of Single Metal Nano-particle Collisions by Open Circuit (Mixed) Potential Changes at an Ultramicroelectrode. Journal of American Chemistry Society. 134: 13212–13215. doi: 10.1021/ja305573g
  • Martínez-Sánchez C., Torres-Rodríguez, L.M. and Cruz, R.F.G. (2013). Kinetic modeling of the biosorption of Cd2+ ions from aqueous solutions onto Eichhornia Crassipes roots using potentiometry: low-cost alternative to conventional methods. Quimica Nova, 36: 1227–1231. doi: 10.1590/S0100-40422013000800022
  • Carrijo, O.A., Liz, R.S. and Makishima, N. (2002). Fiber of green coconut shell as agricultural substratum. Horticultura Brasileira. 20: 533–535.
  • Neto, V.O.S., Melo, D.Q., Oliveira, T.C., Nonato, R., Teixeira, P., Silva, M.A.A. and Nascimento R.F. (2014). Evaluation of new chemically modified coconut shell adsorbents with tannic acid for Cu (II) removal from wastewater. Journal of Applied Polymer Science. 131(18): 40744.
  • Aljeboree, A.M., Alshirifi, A.N. and Alkaim, A.F. (2014). Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arabian Journal of Chemistry. doi: 10.1016/j.arabjc.2014.01.020.
  • Njoku, V.N., Asif, M. and Hameed, B.H. (2015). 2,4-Dichlorophenoxyacetic acid adsorption onto coconut shell-activated carbon: isotherm and kinetic modelling. Desalination and Water Treatment. 55(1): 132–141. doi: 10.1080/19443994.2014.911708
  • Wada, Y., Mitomo, H., Kasuya, K., Nagasawa, N., Seko, N., Katakai A., and Tamada, M. (2006). Novel Biomaterials: Decontamination of Toxic Metals from Wastewater. Journal of Applied Polymer Science. 101: 3856–3861. doi: 10.1002/app.24189
  • Kaur, I., Misra, B.N. and Kumar, S. (1998). Graft copolymerization of methacrylic acid onto isotactic polypropylene by radiochemical methods. Journal of Applied Polymer Science. 69: 143–152. doi: 10.1002/(SICI)1097-4628(19980705)69:1<143::AID-APP17>3.0.CO;2-0
  • Iqbal, M., Saeed, A. and Akhtar, N. (2002). Petiolar felt-sheath of palm: a new biosorbent for the removal of heavy metals from contaminated water. Bioresource Technology. 81(2): 153–155. doi: 10.1016/S0960-8524(01)00126-2
  • Song, C., Wu, S., Cheng, M., Tao, P., Shao, M. and Gao, G. (2014). Adsorption Studies of Coconut Shell Carbons Prepared by KOH Activation for Removal of Lead(II) From Aqueous Solutions. Sustainability, 6: 86–98. doi: 10.3390/su6010086

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.