32
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Niacin Film Coated Carbon Paste Electrode Sensor for the Determination of Epinephrine in Presence of Uric Acid: A Cyclic Voltammetric Study

, , , &
Pages 748-764 | Received 22 Apr 2017, Accepted 10 Oct 2017, Published online: 09 Jan 2018

References

  • Gupta, V.K., Jain, A.K., Maheshwari, G., Lang, H., Ishtaiwi, Z. (2006). Copper(II) selective potentiometric sensors based on porphyrins in PVC matrix. Sensors and Actuators B. 117: 99–106. doi: 10.1016/j.snb.2005.11.003
  • Gupta, V.K., Prasad, R., Kumar, A. (2003). Preparation of ethambutol_/copper(II) complex and fabrication of PVC based membrane potentiometric sensor for copper. Talanta. 60: 149–160. doi: 10.1016/S0039-9140(03)00118-8
  • Gupta, V.K., Singh, A.K., Mehta, S., Gupta, B. (2006). A cobalt(II)-selective PVC membrane based on a Schiff base complex of N,N_-bis(salicylidene)-3,4-diaminotoluene. Analytica Chimica Acta. 566: 5–10. doi: 10.1016/j.aca.2006.02.038
  • Jain, A.K., Gupta, V.K., Singh, L.P., Raisoni, J.R. (2006). A comparative study of Pb2+ selective sensors based on derivatized tetrapyrazole and calix[4.arene receptors. Electrochimica Acta. 51: 2547–2553. doi: 10.1016/j.electacta.2005.07.040
  • Gupta, V.K., Jain, A.K., Kumar, P., Agarwal, S., Maheshwari, G. (2006). Chromium(III)-selective sensor based on tri-o-thymotide in PVC matrix. Sensors and Actuators B. 113: 182–186. doi: 10.1016/j.snb.2005.02.046
  • Gupta, V.K., Singh, A.K., Khayat, M.A., Gupta, B. (2007). Neutral carriers based polymeric membrane electrodes for selective determination of mercury (II). Analytica Chimica Acta. 590: 81–90. doi: 10.1016/j.aca.2007.03.014
  • Gupta, V. K., S. Chandra, and H. Lang. (2005). A highly selective mercury electrode based on a diamine donor ligand. Talanta 66: 575–580. doi: 10.1016/j.talanta.2004.11.028
  • Gupta, V.K., Jain, A.K., Kumar, P. (2006). PVC-based membranes of N,N_-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane as Pb(II)-selective sensor. Sensors and Actuators B. 120: 259–265. doi: 10.1016/j.snb.2006.02.019
  • Khudaish, E.A., Al-Hinaai, M., Al-Harthy, S., Laxman, K. (2014). Electrochemical oxidation of chlorpheniramine at polytyramine film doped with ruthenium (II) complex: Measurement, kinetic and thermodynamic studies. Electrochimica Acta. 135: 319–326. doi: 10.1016/j.electacta.2014.05.029
  • Teradale, A.B., Lamani, S.D., Swamy, B.E.K., Ganesh, P.S., Das, S.N. (2016). Electro-chemical investigation of catechol at poly(niacinamide) modified carbon paste electrode: A voltammetric study. Advances in Physical Chemistry. Article ID 8092860, 8 pages.
  • Malode, S.J., Abbar, J.C., Shetti, N.P., Nandibewoor, S.T. (2012). Voltammetric oxidation and determination of loop diuretic furosemide at a multi-walled carbon nanotubes paste electrode. Electrochimica Acta. 60: 95–101. doi: 10.1016/j.electacta.2011.11.011
  • Ganesh, P.S., Swamy, B.E.K. (2016). Poly (Patton and Reeder’s) Modified Carbon Paste Electrode Sensor for Folic Acid. Journal of Biosensors and Bioelectronics 7: 199.
  • Lamani, S.D., Teradale, A.B., Unki, S.N., Nandibewoor, S.T. (2016). Electrochemical oxidation and determination of methocarbamol at multi walled carbon nanotubes modified glassy carbon electrode. Analytical and Bioanalytical Electrochemistry. 8: 304–317.
  • Ganesh, P.S., Swamy, B.E.K. (2014). Voltammetric Resolution of Dopamine in Presence of Ascorbic Acid and Uric Acid at Poly (Brilliant Blue) Modified Carbon Paste Electrode. Journal of Analytical and Bioanalytical Techniques. 6: 229.
  • Wang, L., Bai, J., Huang, P., Wang, H., Zhang, L., Zhao, Y. (2006). Electrochemical behavior and determination of epinephrine at a penicillamine self-assembled gold electrode. International Journal of Electrochemical Science. 1: 238–249. doi: 10.1149/1.2162452
  • Goyal, R.N., Rana, A.R.S., Chasta, H. (2012). Electrochemical and peroxidase-catalyzed oxidation of epinephrine. Electrochimica Acta. 59: 492–498. doi: 10.1016/j.electacta.2011.11.014
  • Ren, W., Luo, H.Q., Li, N.B. (2006). Electrochemical behavior of epinephrine at a glassy carbon electrode modified by electrodeposited films of caffeic acid. Sensors. 6: 80–89. doi: 10.3390/s6020080
  • Li, H., Luo, W., Hu, X.M. (1999). Determination of enantiomeric purity for epinephrine by high performance liquid chromatography. Chinese Journal of Chromatography. 17: 403–405.
  • Fotopoulou, M.A., Ioannou, P.C. (2002). Post-column terbium complexation and sensitized fluorescence detection for the determination of norepinephrine, epinephrine and dopamine using high-performance liquid chromatography. Analytica Chimica Acta. 462: 179–185. doi: 10.1016/S0003-2670(02)00312-4
  • Zheng, X.W., Guo, Z.H., Zhang, Z.J. (2001). Flow-injection electrogenerated chemilumine-scence determination of epinephrine using luminol. Analytica Chimica Acta. 441: 81–86. doi: 10.1016/S0003-2670(01)01090-X
  • Philip, B.M., Andrea, R.K., Alison, P., David, D.Y.C. (1998). Quantitative assay for epinephrine in dental anesthetic solutions by capillary electrophoresis. Analyst. 123: 1461–1463. doi: 10.1039/a800772a
  • Yang, J.H., Zhang, G.L., Wu, X., Huang, F., Lin, C.G., Cao, X.H., Sun, L.M., Ding, Y.J. (1998). Fluorimetric determination of epinephrine with o-phenylenediamine. Analytica Chimica Acta. 363: 105–110. doi: 10.1016/S0003-2670(98)00017-8
  • Fatma, B.S. (1993). Spectrophotometric and fluorimetric determination of catecholamines. Analytical Letters. 26: 281–294. doi: 10.1080/00032719308017385
  • Lisdat, F., Wollenberger, U. (1998). Trienzyme amplification system for the detection of catechol and catecholamines using internal co-substrate regeneration. Analytical Letters. 31: 1275–1285. doi: 10.1080/00032719808002865
  • Atsushi, K., Kentaro, H., Takehiko, S., Akio, M., Masaaki, Y. (1996). Chemiluminescence sensor with Mn(III)-tetrakis(4-Sulfonatophyl)-porphyrinimmobilized on dioctadecyldimethyl-ammoniumchloride bi layer membranes incorporated into PVC film. Analytical Letters. 29: 673–685. doi: 10.1080/00032719608001775
  • Niu, L.M., Luo, H.Q., Li, N.B., (2005). Electrochemical behavior of epinephrine at a penicillamine self-assembled gold electrode and its analytical application. Micro chimica Acta. 150: 87–93. doi: 10.1007/s00604-005-0331-x
  • Carrera, V., Sabater, E., Vilanova, E., Sogorb, M.A. (2007). A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxy-tryptamine: Application to the secretion of bovine chromaffin cell cultures. Journal of Chromatography. B 847: 88–94. doi: 10.1016/j.jchromb.2006.09.032
  • Sabbioni, C., Saracino, M.A., Mandrioli, R., Pinzauti, S., Furlanetto, S., Gerra, G., Raggi, M.A. (2004). Simultaneous liquid chromatographic analysis of catecholamines and 4-hydroxy-3-methoxyphenylethylene glycol in human plasma: Comparison of amperometric and coulometric detection. Journal of Chromatography A. 1032: 65–71. doi: 10.1016/j.chroma.2004.01.008
  • Dai, X., Fang, X., Zhang, C., Xu, R., Xu, B. (2007). Determination of serum uric acid using high-performance liquid chromatography (HPLC)/isotope dilution mass spectrometry (ID-MS) as a candidate reference method. Journal of Chromatography B. 857: 287–295. doi: 10.1016/j.jchromb.2007.07.035
  • Kalimuthu, P., John, S.A. (2009). Simultaneous determination of epinephrine, uric acid and xanthine in the presence of ascorbic acid using an ultrathin polymer film of 5-amino-1,3,4-thiadiazole-2-thiol modified electrode. Analytica Chimica Acta. 647: 97–103. doi: 10.1016/j.aca.2009.05.036
  • Ali, S.M.U., Alvi, N.H., Ibupoto, Z., Nur, O., Willander, M., Danielsson, B. (2011). Selective potentiometric determination of uric acid with uricase immobilized on ZnO nanowires. Sensors and Actuators B. 152: 241–247. doi: 10.1016/j.snb.2010.12.015
  • Wu, J., Liu, H., Lin, Z. (2008). Electrochemical performance of a carbon nanotube/La-doped TiO2nanocomposite and its use for preparation of an electrochemical nicotinic acid sensor. Sensors. 8: 7085–7096. doi: 10.3390/s8117085
  • Manjunatha, J.G., Swamy, B.E.K., Shreenivas, M.T., Mamath, G.P. (2012). Selective determination of dopamine in the presence of ascorbic acid using a poly (nicotinic acid) modified carbon paste electrode. Analytical and Bioanalytical Electrochemistry. 4: 225–237.
  • Rahman, K.L., Mamun, M.A., Ehsan, M.Q. (2011). Preparation of metal niacin complexes and characterization using spectroscopic and electrochemical techniques. Russian Journal of Inorganic Chemistry. 56: 1436–1442. doi: 10.1134/S0036023611090154
  • Gupta, V.K., Jain, S., Chandra, S. (2003). Chemical sensor for lanthanum(III) determination using aza-crown as ionophore in poly(vinyl chloride) matrix. Analytica Chimica Acta. 486: 199–207. doi: 10.1016/S0003-2670(03)00506-3
  • Gupta, V.K., Chandra, S., Mangla, R. (2002). Dicyclohexano-18-crown-6 as active material in PVC matrix membrane for the fabrication of cadmium selective potentiometric Sensor. Electro-chimica Acta. 47: 1579–1586. doi: 10.1016/S0013-4686(01)00895-7
  • Gupta, V.K., Mangla, R., Khurana, U., Kumar, P. (1999). Determination of Uranyl Ions Using Poly(vinyl chloride) Based 4-tert-Butylcalix[6.arene Membrane Sensor. Electroanalysis. 11: 573–576. doi: 10.1002/(SICI)1521-4109(199906)11:8<573::AID-ELAN573>3.0.CO;2-Z
  • Jain, A.K., Gupta, V.K., Singh, L.P., Khurana, U. (1997). Macrocycle Based Membrane Sensors for the Determination of Cobalt(II) Ions. Analyst. 122: 583–586. doi: 10.1039/a608421d
  • Gupta, V.K., Prasad, R., Kumar, P. and Mangla, R. (2000). New nickel (II) selective potentiometric sensor based on 5,7,12,14-tetramethyldibenzotetraazaannulene in a poly(vinyl chloride) matrix. Analytica Chimica Acta. 420: 19–27. doi: 10.1016/S0003-2670(00)01013-8
  • Prasad, R., Gupta, V.K., Kumar, A. (2004). Metallo-tetraazaporphyrin based anion sensors: regulation of sensor characteristics through central metal ion coordination. Analytica Chimica Acta. 508: 61–70. doi: 10.1016/j.aca.2003.11.056
  • Gupta, V.K., Ganjali, M.R., Norouzi, P., Khani, H., Nayak, A., Agarwal, S. (2011). Electrochemical Analysis of Some Toxic Metals by Ion–Selective Electrodes. Critcal Reviews in Analytical Chemistry. 41: 282–313. doi: 10.1080/10408347.2011.589773
  • Goyal, R.N., Gupta, V.K., Oyama, M., Bachheti, N. (2007). Gold nanoparticles modified indium tin oxide electrode for the simultaneous determination of dopamine and serotonin: Application in pharmaceutical formulations and biological fluids. Talanta. 72: 976–983. doi: 10.1016/j.talanta.2006.12.029
  • Gupta, V.K., Singh, L.P., Singh, R., Upadhyay, N., Kaur, S.P., Sethi, B. (2012). A novel copper (II) selective sensor based on Dimethyl 4, 42 (o-phenylene) bis(3-thioallophanate) in PVC matrix. Journal of Molecular Liquids. 174: 11–16. doi: 10.1016/j.molliq.2012.07.016
  • Gupta, V.K., Sethi, B., Sharma, R.A., Agarwal, S., Bharti, A. (2013). Mercury selective potentiometric sensor based on low rim functionalized thiacalix [4.-arene as a cationic receptor. Journal of Molecular Liquids. 177: 114–118. doi: 10.1016/j.molliq.2012.10.008
  • Ganesh, P.S., Swamy, B.E.K. (2015). Simultaneous electroanalysis of hydroquinone and catechol at poly(brilliant blue) modified carbon paste electrode: A voltammetric study. Journal of Electro-analytical Chemistry. 756: 193–200. doi: 10.1016/j.jelechem.2015.08.027
  • Ganesh, P.S., Swamy, B.E.K. (2015). Simultaneous electroanalysis of norepinephrine, ascorbic acid and uric acid using poly(glutamic acid) modified carbon paste electrode. Journal of Electro-analytical Chemistry. 752: 17–24. doi: 10.1016/j.jelechem.2015.06.002
  • Ganesh, P.S., Swamy, B.E.K. (2015). Sodium Dodecyl Sulphate/Poly(Brilliant Blue)/Multi Walled Carbon Nanotube Modified Carbon Paste Electrode for the Voltammetric Resolution of Dopamine in the Presence of Ascorbic Acid and Uric Acid., Journal of Analytical and Bioanalytical Techniques. 6: 285.
  • Ganesh, P.S., Swamy, B.E.K. (2016). Voltammetric resolution of catechol and hydroquinone at eosin Y film modified carbon paste electrode. Journal of Molecular Liquids. 220: 208–215. doi: 10.1016/j.molliq.2016.04.078
  • Rekha., Swamy, B.E.K., Ganesh, P.S. (2016). Poly(amoxicillin) modified carbon paste electrode for the determination of dopamine: A cyclic voltammetric study. Analytical and Bioanalytical Electrochemistry. 8: 184–192.
  • Ghica, M.E., Brett, C.M.A. (2013). Simple and efficient epinephrine sensor based on carbon nanotube modified carbon film electrodes. Analytical Letters. 46: 1379–1393. doi: 10.1080/00032719.2012.762584
  • Laviron, E. (1979). General expression of the linear potential sweep voltammograms in the case of diffusion less electrochemical systems. Journal of Electroanalytical Chemistry. 101: 19–28. doi: 10.1016/S0022-0728(79)80075-3
  • Li, C. (2007). Electrochemical determination of dipyridamole at a carbon paste electrode using cetyltrimethyl ammonium bromide as enhancing element. Colloids and Surfaces B: Biointerfaces. 55: 77–83. doi: 10.1016/j.colsurfb.2006.11.009
  • Yunhua, W., Xiaobo, J., Shengshui, H. (2004). Studies on electrochemical oxidation of azithromycin and its interaction with bovine serum albumin. Bioelectrochemistry. 64: 91–97. doi: 10.1016/j.bioelechem.2004.03.005
  • Sun, W., Wang, Y., Lu, Y., Hu, A., Shi, F., Sun, Z. (2013). High sensitive simultaneously electrochemical detection of hydroquinone and catechol with a poly(crystal violet) functionalized graphene modified carbon ionic liquid electrode. Sensors and Actuators B: Chemical. 188: 564–570. doi: 10.1016/j.snb.2013.07.032
  • Aslanoglu, M., Kutluay, A., Karabulut, S., Abbasoglu, S. (2008). Voltammetric determination of adrenaline using a poly(1-Methylpyrrole) modified glassy carbon electrode. Journal of the Chinese Chemical Society. 55: 794–800. doi: 10.1002/jccs.200800119
  • Wang, Y., Chen, Z. (2009). A novel poly(taurine) modified glassy carbon electrode for the simultaneous determination of epinephrine and dopamine. Colloids and Surfaces B: Biointerfaces. 74: 322–327. doi: 10.1016/j.colsurfb.2009.07.046
  • Shahrokhian, S., Ghalkhani, M., Amini, M.K. (2009). Application of carbon-paste electrode modified with iron phthalocyanine for voltammetric determination of epinephrine in the presence of ascorbic acid and uric acid. Sensors and Actuators B. 137: 669–675. doi: 10.1016/j.snb.2009.01.022
  • Shankar, S.S., Swamy, B.E.K. (2014). Detection of epinephrine in presence of serotonin and ascorbic acid by TTAB modified carbon paste electrode: A voltammetric study. International Journal of Electrochemical Science. 9: 1321–1339.
  • Mazloum-Ardakani, M., Rajabzadeh, N., Dehghani-Firouzabadi, A., Sheikh-Mohseni, M.A., Benvidi, A., Naeimi, H., Akbari, M., Karshenas, A. (2012). Carbon nanoparticles and a new derivative of hydroquinone for modification of carbon paste electrode for simultaneous determination of epinphrine and acetaminophen. Analytical Methods. 4: 2127–2133. doi: 10.1039/c2ay25063b
  • Agboola, B.O., Vilakazi, S.L., Ozoemena, K.I. (2009). Electrochemistry at cobalt (II) tetra-sulfophthalocyanine-multi-walled carbon nanotubes modified glassy carbon electrode: a sensing platform for efficient suppression of ascorbic acid in the presence of epinephrine. Journal of Solid State Electrochemistry. 13: 1367–1379. doi: 10.1007/s10008-008-0691-3
  • Liu, X., Ye, D., Luo, L., Ding, Y., Wang, Y., Chu, Y. (2012). Highly sensitive determination of epinephrine by a MnO /Nafion modified glassy carbon electrode. Journal of Electroanalytical. Chemistry. 665: 1–5. doi: 10.1016/j.jelechem.2011.06.030
  • Moraes, F.C., Golinelli, D.L.C., Mascaro, L.H., Machado, S.A.S. (2010). Determination of epinephrine in urine using multi-walled carbon nanotube modified with cobalt phthalo-cyanine in a paraffin composite electrode. Sensors and Actuators B. 148: 492–497. doi: 10.1016/j.snb.2010.05.005
  • Wang, J., Tang, P., Zhao, F.Q., Zeng, B.Z. (2005). Voltammetric response of epinephrine at carbon nanotube modified glassy carbon electrode and activated glassy carbon electrode. Wuhan University Journal of Natural Sciences. 10: 913–918. doi: 10.1007/BF02832438
  • Valentini, F., Palleschi, G., Lopez Morales, E., Orlanducci, S., Tamburri, E., Terranova, M.L. (2007). Functionalized single-walled carbon nanotubes modified microsensors for the selective response of epinephrine in the presence of ascorbic acid. Electroanalysis. 19: 859–869. doi: 10.1002/elan.200603788
  • Li, X., Chen, M., Ma, X. (2012). Selective determination of epinephrine in the presence of ascorbic acid using a glassy carbon electrode modified with graphene. Analytical Sciences. 28: 147–151. doi: 10.2116/analsci.28.147
  • Cui, F., Zhang, X. (2012). Electrochemical sensor for epinephrine based on a glassy carbon electrode modified with graphene/gold nanocomposites. Journal of Electroanalytical Chemistry. 669: 35–41. doi: 10.1016/j.jelechem.2012.01.021
  • Ren, W., Luo, H.Q., Li, N.B. (2006b). Simultaneous voltammetric measurement of ascorbic acid, epinephrine and uric acid at a glassy carbon electrode modified with caffeic acid. Biosensors and Bioelectronics. 21: 1086–1092. doi: 10.1016/j.bios.2005.04.002
  • Raoof, J.B., Ojani, R., Baghayeri, M. (2011). Multi-wall carbon nanotubes as a sensor and ferrocenedicarboxylic acid as a mediator for voltammetric determination of glutathione in hemolysed erythrocyte. Analytical Methods. 3: 2637–2643. doi: 10.1039/c1ay05031a
  • Beitollahi, H., Maleh, H.K., Khabazzadeh, H. (2008). Nano molar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-Oxo-3-phenyl-3,4-dihydro-quinazolinyl)-N2 -phenyl-hydrazine-carbothioamide. Analytical Chemistry. 80: 9848–9851. doi: 10.1021/ac801854j

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.