72
Views
1
CrossRef citations to date
0
Altmetric
Articles

Detection of Nanomolar Concentrations H2O2 Using Cobalt (II) Phthalocyanine Modified GCE with MWCNTs

&
Pages 33-48 | Received 15 Nov 2019, Accepted 07 Mar 2020, Published online: 03 Apr 2020

References

  • Gonzalez, A., Ruiz, M.A., Yanez-Sedeno, P., Pingarron, J.M. (1994). Voltammetric determination tert-butylhydroxyanisole in micellar and emulsified media. Analytica Chimica Acta. 285(1–2): 63-71. doi: 10.1016/0003-2670(94)85009-7
  • Jayasri, D., Sriman Narayanan, S. (2007). Manganese(II) hexacyanoferrate based renewable amperometric sensor for the determination of butylated hydroxyanisole in food products. J. Food Chemistry. 101: 607-614. doi: 10.1016/j.foodchem.2006.02.021
  • Ruiz, M.A., Calvo, M.P., Pingarron, J.M. (1994). Catalyticvoltammetric determination of the antioxidant tert-butylhydroxyanisole (BHA) at a nickel phthalocyanine modified carbon paste electrode. Talanta. 41(2): 289-294. doi: 10.1016/0039-9140(94)80124-X
  • Ruiz, M.A., Blazquez, M.G., Pingarron, J.M. (1995). Electrocatalytic and flow-injection of the antioxidant tert-butylhydroxyanisole at a nickel phthalocyanine polymer modified electrode. Analytica Chimica Acta. 305(1–3): 49-56. doi: 10.1016/0003-2670(94)00340-R
  • De La Fuente, C., Acuna, J.A., Vazquez, M.D., Tascon, M.L., Batanero, P.S. (1999). Voltammetric determination of the phenolic antioxidants 3-ter-butyl-4-hydroxyanisole and tert-butylhydroquinone at a polypyrrole electrode modified with a nickel phthalocyanine complex. Talanta. 49(2): 441-452. doi: 10.1016/S0039-9140(99)00004-1
  • Ruiz, M.A., Garcia-Moreno, E., Barbas, C., Pingarron, J.M. (1999). Determination of phenolic antioxidants by HPLC with amperometric detection at a nickel phthalocyanine polymer modified electrode. Electroanalysis. 11(7): 470-474. doi: 10.1002/(SICI)1521-4109(199906)11:7<470::AID-ELAN470>3.0.CO;2-F
  • Robards, K., Dilli, S. (1987). Analytical chemistry of synthetic food antioxidants. A review. Analyst. 112(7): 933-943. doi: 10.1039/an9871200933
  • Xu, Y., Hu, C., Hu, S. (2008). A hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin in Hb-Ag sol films. Sensor. Actuator B. 130: 816-822. doi: 10.1016/j.snb.2007.10.048
  • Song, J., Xu, J., Zhao, P., Lu, L., Bao, J. (2011). A hydrogen peroxide biosensor based on direct electron transfer from hemoglobin to an electrode modified with Nafion and activated nanocarbon. Microchim. Acta. 172: 117-123. doi: 10.1007/s00604-010-0470-6
  • Wang, Q., Yun, Y., Zheng, J. (2009). Nonenzymatic hydrogen peroxide sensor based on a polyaniline-single walled carbon nanotubes composite in a room temperature ionic liquid. Microchim. Acta. 167: 153. doi: 10.1007/s00604-009-0236-1
  • Bou, R., Codony, R., Tres, A., Decker, E., Guardiola, F. (2008). Determination of hydroperoxides in foods and biological samples by the ferrous oxidation-xylenol orange method: A review of the factors that influence the method’s performance. Anal. Biochem. 377: 1-15. doi: 10.1016/j.ab.2008.02.029
  • Lokesh, K.S., Adriaens, A. (2013). Synthesis and characterization of tetra-substituted palladium phthalocyanine complexes. Dyes Pigments. 96: 269-277. doi: 10.1016/j.dyepig.2012.08.018
  • Mashazi, P.N., Ozoemena, K.I., Nyokong, T. (2006). Tetracarboxylic acid cobalt phthalocyanine SAM on gold: potential applications as amperometric sensor for H2O2 and fabrication of glucose biosensor. Electrochim. Acta. 52: 177-186. doi: 10.1016/j.electacta.2006.04.056
  • Thenmozhi, K., Narayanan, S.S. (2007). Electrochemical sensor for H2O2 based on thionin immobilized 3-aminopropyltrimethoxy silane derived sol-gel thin film electrode, Sensors Actuators B Chem. 125: 195-201. doi: 10.1016/j.snb.2007.02.006
  • Hamidi, H., Shams, E., Yadollahi, B., Esfahani, F.K. (2009). Fabrication of carbon paste electrode containing [PFeW11O39]4-polyoxoanion supported on modified amorphous silica gel and its electrocatalytic activity for H2O2 reduction. Electrochim. Acta. 54: 3495-3500. doi: 10.1016/j.electacta.2008.12.063
  • Lokesh, K.S., Shambhulinga, A., Manjunatha, N., Imadadulla, M., Hojamberdiev, M. (2015). Porphyrin macrocycle-stabilized gold and silver nanoparticles and their application in catalysis of hydrogen peroxide. Dyes Pigments. 120:155-160. doi: 10.1016/j.dyepig.2015.04.002
  • Koodlur Sannegowda, L., Reddy, K.R.V., Shivaprasad, K.H. (2014). Stable nano-sized copper and its oxide particles using cobalt tetraamino phthalocyanine as a stabilizer; application to electrochemical activity. RSC Adv. 4: 11367-11374. doi: 10.1039/C3RA42682C
  • Schramm, C.J., Scaringe, R.P., Stojakovic, D.R., Hoffman, B.M., Ibers, J.A., Marks, T.J. (1980). Chemical, spectral, structural, and charge transport properties of the “molecular metals” produced by iodination of nickel phthalocyanine. J. Am. Chem. Soc. 102: 6702-6713. doi: 10.1021/ja00542a008
  • Kanyaev, N.P., Spryskov, A.A. (1952). Determination of copper in manstrol blue. Zh. Prikl. Khim. 25: 1220-1221.
  • Du, S., Luo, Y., Liao, Z., Zhang, W., Li, X., Liang, T., Zuo, F., Ding, K. (2018). New insights into the formation mechanism of gold nanoparticles using dopamine as a reducing agent. Journal of Colloid and Interface Science. 523: 27-34. doi: 10.1016/j.jcis.2018.03.077
  • Imadadulla, M., Manjunath, N., Lokesh, K.S. (2018). Solvent dependent dispersion behaviour of macrocycle stabilized cobalt nanoparticles and their applications. New J. Chem. 42: 11364-11372. doi: 10.1039/C8NJ01773E
  • Lokesh, K.S. (2013). Layer-by-layer self assembly of a water-soluble phthalocyanine on gold. Application to the electrochemical determination of hydrogen peroxide. Bioelectrochemistry. 91: 21-27. doi: 10.1016/j.bioelechem.2012.12.001
  • Nyokong, T. (2007). Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines. Coord. Chem. Rev. 25: 11707-1722.
  • Manjunatha, N., Imadadulla, M., Lokesh, K.S., Venugopala Reddy, K.R. (2018). Synthesis and electropolymerization of tetra [β (2 benzimidazole)] and tetra [β (2 (1 (4 aminophenyl)) benzimidazole)] embedded cobalt phthalocyanine and their supercapacitance behaviour. Dyes Pigments. 153: 213-224. doi: 10.1016/j.dyepig.2018.01.042
  • Uur, A.L., Diner, H.A., Erdomu, A. (2012). Synthesis, photophysical and thermal studies of ymmetrical and unsymmetrical zinc phthalocyanines. Polyhedron. 31: 431-437. doi: 10.1016/j.poly.2011.09.042
  • Venugopala Reddy, K.R., Harish, M.N.K., Fassiulla, M. Khan, M.H., Keshavayya, J. (2007). Synthesis, spectral, magnetic and thermal studies on symmetrically substituted metal(II)- 1,3,8,10, 15,17,22,24-octafluorophthalocyanines. J. Fluorine Chemistry. 128(9): 1019-1025. doi: 10.1016/j.jfluchem.2007.05.001
  • Bohrer, F.I., Colesniuc, C.N., Park, J., Schuller, I.K., Kummel, A.C., Trogler, W.C. (2008). Selective detection of vapor phase hydrogen peroxide with phthalocyanine chemiresistors. J. Am. Chem. Soc. 130: 3712-3713. doi: 10.1021/ja710324f
  • Kondo, T., Tamura, A., Kawai, T. (2009). Cobalt phthalocyanine-modified boron-doped diamond electrode for highly sensitive detection of hydrogen peroxide. J. Electrochem. Soc. 156: F145–F150. doi: 10.1149/1.3211799
  • Imadadulla, M., Manjunatha, N., Veeresh Sajjan, A., Dayananda Puttappashetty, B., Lokesh, K.S. (2018). Electropolymerized film of cobalt tetrabenzimidazolephthalocyanine for the amperometric detection of H2O2. J Electroanal. Chem. 826: 96-103. doi: 10.1016/j.jelechem.2018.08.029
  • Fang, Y., Zang, D., Qin, X., Miao, Z., Takahashi, S., Anzai, J., Chen, Q. (2012). A nonenzymatichydrogen peroxide sensor based on poly(vinyl alcohol)-multiwalled carbonnanotubes- platinum nanoparticles hybrids modified glassy carbon electrode. Electrochimica Acta. 70: 266–271. doi: 10.1016/j.electacta.2012.03.105
  • Ensafi, A.A., Mokhtari Abarghoui, M., Rezaei, B. (2014). Electrochemical determination of hydrogen peroxide usingcopper/porous silicon based non-enzymatic sensor. Sensors Actuators B. 196: 398-405. doi: 10.1016/j.snb.2014.02.028
  • Palanisamy, S., Chen, S.M., Sarawathi, R. (2012). A novel nonenzymatic hydrogen per-oxide sensor based on reduced grapheme oxide/ZnO composite modifiedelectrode. Sensors Actuators B: Chem. 166-167: 372-377.
  • Li, Y., Zhang, J.J., Xuan, J., Jiang, L.P., Zhu, J.J. (2010). Fabrication of a novel nonenzymatic hydrogen peroxide sensor based on Se/Pt nanocomposites. Electrochem. Commun. 12: 777-780. doi: 10.1016/j.elecom.2010.03.031
  • Mounesh, Jilani, B.S., Malatesh, P., Venugopala Reddy, K.R., Lokesh, K.S. (2019). Simultaneous and sensitive detection of ascorbic acid in presence of dopamine using MWCNTs- decorated cobalt (II) phthalocyanine modified GCE. Microchemical Journal. 147: 755-763. doi: 10.1016/j.microc.2019.03.090

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.