39
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Efficient Leaching Process of Valuable Elements from Gibbsite Ore Materials in Talet Seleim, Southwestern, Sinai, Egypt Using Green and Ecofriendly Lixiviant Agent: Optimization, Kinetic and Thermodynamic Study

Pages 141-158 | Received 23 Mar 2023, Accepted 25 May 2023, Published online: 04 Jul 2023

References

  • Whitworth, A.J., Forbes, E., Verster, I., Jokovic, V., Awatey, B. & Parbhakar-Fox, A. (2022). Review on advances in mineral processing technologies suitable for critical metal recovery from mining and processing wastes. Cleaner Engineering and Technology. 100451.
  • Coban, O., Başlayıcı, S., Acma, M.E. (2021). Hydrometallurgical nickel and cobalt production from lateritic ores: Optimi-zation and comparison of atmospheric pressure leaching and pug-roast-leaching pro-cesses. Acta Metallurgica Slovaca. 27: 17-22. doi: 10.36547/ams.27.1.740
  • Barrueto, Y., Hernández, P., Jiménez, Y.P. & Morales, J. (2022). Properties and application of ionic liquids in leaching base/precious metals from e-waste. A review. Hydrometallurgy. 105895.
  • Habbache, N., Alane, N., Djerad, S., Tifouti, L. (2009). Leaching of copper oxide with different acid solutions. Chemical Engineering Journal. 152(2-3): 503-508. doi: 10.1016/j.cej.2009.05.020
  • Hyvärinen, O., Hämäläinen, M. (2005). Hydro Copper TM - a new technology pro-ducing copper directly from concentrate. Hydrometallurgy. 77(1-2): 61-65. doi: 10.1016/j.hydromet.2004.09.011
  • Romero, R., Mazuelos, A., Palencia, I., Carranza, F. (2003). Copper recovery from chalcopyrite concentrates by the BRISA process. Hydrometallurgy. 70(1-3): 205-215. doi: 10.1016/S0304-386X(03)00081-1
  • Han, K.N., Meng, X. (2003). Recovery of copper from its sulfides and other sources using halogen reagents and oxidants. Miner Metall Process. 20(3): 160-164.
  • Solomon, M.M., Gerengi, H., Kaya, T., Umoren, S.A. (2017). Performance Evalua-tion of a Chitosan/Silver Nanoparticles Com-posite on St37 Steel Corrosion in a 15% HCl Solution. ACS Sustain. Chem. Eng. 5: 809-820. doi: 10.1021/acssuschemeng.6b02141
  • Estrada-de los Santos, F., Rivera-Santillán, R., Talavera-Ortega, M., Bautista, F. (2016).Catalytic and galvanic effects of pyrite on ferric leaching of sphalerite. Hydrometal-lurgy. 163: 167-175. doi: 10.1016/j.hydromet.2016.04.003
  • Lochmann, J., Pedlik, M. (1995). Kinetic anomalies of dissolution of sphalerite in ferric sulfate solution. Hydrometallurgy. 37: 89-96. doi: 10.1016/0304-386X(94)00021-T
  • Nikkhou, F., Xia, F., Deditius, A.P. (2019). Variable surface passivation during direct leaching of sphalerite by ferric sulfate, ferric chloride, and ferric nitrate in a citrate medium. Hydrometallurgy. 188: 201-215 doi: 10.1016/j.hydromet.2019.06.017
  • Tawonezvi, T., Nomnqa, M., Petrik, L. & Bladergroen, B.J. (2023). Recovery and Recycling of Valuable Metals from Spent Lithium-Ion Batteries: A Comprehensive Review and Analysis. Energies. 16(3): 1365. doi: 10.3390/en16031365
  • Peeters, N., Binnemans, K. & Riaño, S. (2022). Recovery of cobalt from lithium-ion battery cathode material by combining solvoleaching and solvent extraction. Green Chemistry. 24(7): 2839-2852. doi: 10.1039/D1GC03776E
  • Gernon, M. (1999). Environmental benefits of methanesulfonic acid. Comparative pro-perties and advantages. Green Chemistry. 1(3): 127-40. doi: 10.1039/a900157c
  • Hidalgo, T., Kuhar, L., Beinlich, A., Putnis, A. (2018). Kinetic study of chalcopyrite dissolution with iron (III) chloride in methanesulfonic acid. Minerals Engineering. 125: 66-74. doi: 10.1016/j.mineng.2018.05.025
  • Hidalgo, T., Kuhar, L., A. Beinlich, A., Putnis, A. (2019). Kinetics and mineralogical analysis of copper dissolution from a bornite/chalcopyrite composite sample in ferric-chloride and methanesulfonic-acid solutions. Hydrometallurgy. 188: 140-56. doi: 10.1016/j.hydromet.2019.06.009
  • Ahn, J., Wu, J. & Lee, J. (2022). A Com-parative Kinetic Study of Chalcopyrite Leaching Using Alternative Oxidants in Methanesulfonic Acid System. Mineral Pro-cessing and Extractive Metallurgy Review. 43(3): 390-401. doi: 10.1080/08827508.2021.1893719
  • Tang, C., Deng, X., Chen, Y., Li, Y., Deng, C., Zhu, Q., Liu, J. & Yang, S. (2021). Electrochemical dissolution and recovery of tin from printed circuit board in methane-sulfonic acid solution. Hydrometallurgy. 205: 105726. doi: 10.1016/j.hydromet.2021.105726
  • Rodriguez, N.R., Grymonprez, B. & Binnemans, K. (2021). Integrated Process for Recovery of Rare-Earth Elements from Lamp Phosphor Waste Using Methane-sulfonic Acid. Ind.Eng. Chem. Res. 60(28): 10319-10326. doi: 10.1021/acs.iecr.1c01429
  • Palden, T., Onghena, B., Regadío, M., Binnemans, K. (2019). Methanesulfonic acid: asustainable acidic solvent for recovering metals from the jarosite residue of the zincindustry. Green Chem. 21: 5394-5404. doi: 10.1039/C9GC02238D
  • Wang, H., Yang, S., Chang, C., Zhou, X., Deng, X., He, J., He, X., Chen, Y. (2020). Directoxidative pressure leaching of bismuth sulfide concentrate in methanesulfonic acidmedium. Hydrometallurgy. 194: 105347. doi: 10.1016/j.hydromet.2020.105347
  • Nan, T.X., Yang, J.G., Tang, C.B., Wang, W.C., Long, W., Yang, J.Y. (2022). Hydrometallurgical process for extrac-ting bismuth from by-product of leadsmelting based on methanesulfonic acid system, Trans. Nonferrous Met. Soc. China32: 319-332. doi: 10.1016/S1003-6326(22)65797-2
  • Gernon, M.D., Wu, M., Buszta, T., Janney, P. (1999). Environmental benefits of methanesulfonic acid. Comparative properties and advantages. Green Chem. 1: 127-140. doi: 10.1039/a900157c
  • Shapiro, L. and Brannock, W.W. (1962). Rapid analysis of silicate, carbonate and phosphate rocks (No. 1144). US Government Printing Office.
  • Marczenko, Z. (1986). Spectrophotometric determination of elements, New York: John Wiley and Sons.
  • Mathew, K.J., Bürger, S., Vogt, S., Mason, P., Morales-Arteaga, M.E., Narayanan, U.I. (2009). Uranium assay determination using Davies and Gray titration: an overview and implementation of GUM for uncertainty evaluation. J. Radioanal. Nucl. Chem. 282: 939-944. doi: 10.1007/s10967-009-0186-4
  • Kassab, W.A. (2022). Comparative study for leaching processes of uranium, copper and cadmium from gibbsite ore material of Talet Seleim, Southwestern, Sinai, Egypt. Journal of Radioanalytical and Nuclear Chemistry. 1-15.
  • Zaki, D.I. (2021). Recovery of Uranium, Copper, and Zinc from Abu Thor Gibbsite Bearing Shale Ore Material, Abu Zeneima Area, Southwestern Sinai, Egypt. Radio-chemistry. 63: 724-733.
  • Jadhao, P.R., Mishra, S., Singh, A., Pant, K.K. and Nigam, K.D.P. (2023). A sustainable route for the recovery of metals from waste printed circuit boards using methanesulfonic acid. Journal of Environmental Management. 335: 117581. doi: 10.1016/j.jenvman.2023.117581
  • Salem, A.R., Kassab, W.A. (2022). Uranium and rare earth elements leaching characteristics from El-Sella mineralized Granite, Eastern Desert, Egypt. International Journal of Environmental Analytical Chemistry. 102(19): 7498-7522. doi: 10.1080/03067319.2020.1832479
  • Guo, X., Zhang, Z., Xing, P., Wang, S., Guo, Y. and Zhuang, Y. (2023). Kinetic mechanism of copper extraction from methyl chlorosilane slurry residue using hydrogen peroxide as oxidant. Chinese Journal of Chemical Engineering.
  • He, J., Zhang, M., Chen, H., Guo, S., Zhu, L., Xu, J. and Zhou, K. (2022). Enhancement of leaching copper by organic agents from waste printed circuit boards in a sulfuric acid solution. Chemosphere. 307: 135924. doi: 10.1016/j.chemosphere.2022.135924
  • Huang, Q., Xiang, J., Wang, X., Pei, G. and Lv, X. (2020). Dissolution kinetics of calciumvanadates in sulfuric acid: a fundamental study for the vanadium extraction process, Journal of Chemical Technology & Biotechnology. 95(6): 1773-1780 doi: 10.1002/jctb.6375
  • Yu, J., Ma, B., Zhao, S., Yao, Z., Wang, C., Wang, B., Gao, M. and Feng, G. (2023). Vanadium extraction from water-cooled vanadium converter slag via salt-free roasting and acid leaching. Process Safety and Environmental Protection. 172: 727-737. doi: 10.1016/j.psep.2023.02.071
  • Tran, T.T., Moon, H.S., Lee, M.S. (2021). Comparison of the Chemical Reactivity between Sulfuric and Methanesulfonic Acids as a Leaching Agent. Resources Recycling. 30(3): 41-46. doi: 10.7844/kirr.2021.30.3.41
  • Madakkaruppan, V., Pius, A., Sreenivas, T., Shiv Kumar, K. (2015). Leaching kinetics of uranium from a quartz-chlorite-biotite rich low-grade Indian ore. Journalof Radioanalytical and Nuclear Chemistry. 303: 1793-1801.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.