15
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An eco-friendly spectrophotometric analysis tool with whiteness assessment to assay erythromycin in pharmaceutical formulation through metal complexation with Ni2+: application to the microbiological activity using agar diffusion method

, , , &
Pages 239-253 | Received 24 Jan 2024, Accepted 09 Mar 2024, Published online: 11 Apr 2024

References

  • Ettaboina, S.K., Katakam, L.N.R., Dongala, T. (2022). Development and validation of a stability-indicating RP-HPLC method for the determination of erythromycin related impurities in topical dosage form. Pharm. Chem. J. 56 (1): 131-137. doi: 10.1007/s11094-022-02610-5
  • Habibi, B., Ghorbel-Abid, I., Lahsini, R., Ben Hassen, D.C., Trabelsi-Ayadi, M. (2019). Development and validation of a rapid HPLC method for multiresidue determination of erythromycin, clarithromycin, and azithromycin in aquaculture fish muscles. Acta Chromatogr. 31(2): 109-112. doi: 10.1556/1326.2017.00376
  • Liu MingXia, L.M., Wang Zhen, W.Z., Li XiangJun, L.X., Chu XiaoGang, C.X., Dong YaLei, D.Y., Zhang YuPing, Z.Y. (2019). Application of the mechanical high-pressure method combined with high-performance liquid chromatography-tandem mass spectrometry for determination of veterinary drug residues in incurred chicken and rabbit muscle tissues.
  • Xie, Y., Hu, Q., Zhao, M., Cheng, Y., Guo, Y., Qian, H., Yao, W. (2018). Simultaneous determination of erythromycin, tetracycline, and chloramphenicol residue in raw milk by molecularly imprinted polymer mixed with solid-phase extraction. Food anal.methods. 11(2): 374-381. doi: 10.1007/s12161-017-1008-x
  • Wang, B., Nam, S., Kim, E., Jeon, H., Lee, K., Xie, K. (2021). Identification of erythromycin and clarithromycin metabolites formed in chicken liver microsomes using liquid chromatography-high-resolution mass spectrometry. Foods. 10(7): 1504. doi: 10.3390/foods10071504
  • García-Mayor, M.A., Paniagua-González, G., Soledad-Rodríguez, B., Garcinuño-Martínez, R.M., Fernández-Hernando, P., Durand-Alegría, J.S. (2015). Occurrence of erythromycin residues in sheep milk. Validation of an analytical method. F.C.T. 78: 26-32.
  • Kaklamanos, G., Vincent, U., von Holst, C. (2013). Multi-residue method for the detection of veterinary drugs in distillers grains by liquid chromatography–Orbitrap high resolution mass spectrometry. J. Chromatogr. A. 1322: 38-48. doi: 10.1016/j.chroma.2013.10.079
  • Salvia, M.V., Vulliet, E., Wiest, L., Baudot, R., Cren-Olivé, C. (2012). Development of a multi-residue method using acetonitrile-based extraction followed by liquid chromatography–tandem mass spectrometry for the analysis of steroids and veterinary and human drugs at trace levels in soil. J.of Chromatogr. A. 1245: 122-133. doi: 10.1016/j.chroma.2012.05.034
  • Tang, H.P.O., Ho, C., Lai, S.S.L. (2006). High- throughput screening for multi-class veterinary drug residues in animal muscle using liquid chromatography/tandem mass spectrometry with on-line solid-phase extraction. Rapid Communications in Mass Spectrometry: Int.J.Mass spectrom. 20(17): 2565-2572. doi: 10.1002/rcm.2635
  • Christian, T., Schneider, R.J., Färber, H.A., Skutlarek, D., Meyer, M.T., Goldbach, H.E. (2003). Determination of antibiotic residues in manure, soil and surface waters. Acta hydrochim. Hydrobiol. 31(1): 36-44. doi: 10.1002/aheh.200390014
  • The British pharmacopiea (2013). The stationary Office:London,Electronic version.
  • Pharmacopeia U.S. (2016). USP 39-NF34. The United States Pharmacopeia.
  • Zhou, L.-J., Ying, G.-G., Liu, S., Zhao, J.-L., Chen, F., Zhang, R.-Q., Peng, F.-Q., Zhang, Q.-Q. (2012). Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry. J. Chromatogr. A. 1244: 123-138. doi: 10.1016/j.chroma.2012.04.076
  • Bogialli, S., Ciampanella, C., Curini, R., Di Corcia, A., Laganà, A. (2009). Development and validation of a rapid assay based on liquid chromatography–tandem mass spectromtetry for determining macrolide antibiotic residues in eggs. J.of Chromatogr.A. 1216(40): 6810-6815. doi: 10.1016/j.chroma.2009.08.020
  • Lucchetti, D., Fabrizi, L., Esposito, A., Guandalini, E., Di Pasquale, M., Coni, E. (2005). Simple Confirmatory Method for the Determination of Erythromycin Residues in Trout: A Fast Liquid−Liquid Extraction Followed by Liquid Chromatography−Tandem Mass Spectrometry. J. of agri. and food chem. 53(25): 9689-9694. doi: 10.1021/jf0520894
  • Dasenaki, M.E. and Thomaidis, N.S. (2015). Multi-residue determination of 115 veterinary drugs and pharmaceutical residues in milk powder, butter, fish tissue and eggs using liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta. 880: 103-121. doi: 10.1016/j.aca.2015.04.013
  • Pius, U.O. and Gloria, N.C. Spectrophotometric determination of erythromycin using charge transfer complexation.
  • Sayed, R.A., Hassan, W.S., El-Mammli, M.Y., Shalaby, A. (2013). New spectrophotometric and conductometric methods for macrolide antibiotics determination in pure and pharmaceutical dosage forms using rose Bengal. J. Spectrosc. Article ID 214270.
  • Wankhade, R., Bhalerao, S., Panchory, H., Pundir, A., Pradhan, R. (2012). Analysis of erythromycin and benzoyl peroxide in combined dosage form by UV-visible spectrophotometry. Int J Pharm Pharm Sci. 4(4): 527-531.
  • Bagchi, A., Mukherjee, P., Raha, A. (2015). Development and validation of UV spectro-photometric method for estimation of erythromycin in bulk drug and pharmaceutical formulation. Int J Recent Adv. Pharma. Res. 5: 71-6.
  • Zhang, Y., Xue, X., Su, S., Guo, Z., Wang, J., Ding, L., Liu, Y., Zhu, J. (2018). A multi-class, multi-residue method for detection of veterinary drugs in multiple meat using a pass-through cleanup SPE technique and UPLC-MS/MS analysis. Food Anal. Methods. 11: 2865-2884. doi: 10.1007/s12161-018-1244-8
  • Lopes, R.P., Reyes, R.C., Romero-González, R., Frenich, A.G., Vidal, J.L.M. (2012). Development and validation of a multiclass method for the determination of veterinary drug residues in chicken by ultra high performance liquid chromatography–tandem mass spectrometry. Talanta. 89: 201-208. doi: 10.1016/j.talanta.2011.11.082
  • Tang, Y.-Y., Lu, H.-F., Lin, H.-Y., Shih, Y.-C., Hwang, D.-F. (2012). Multiclass analysis of 23 veterinary drugs in milk by ultraperformance liquid chromatography–electrospray tandem mass spectrometry. J. Chromatogr. B. 881: 12-19. doi: 10.1016/j.jchromb.2011.11.005
  • Wang, Z., Wang, X., Tian, H., Wei, Q., Liu, B., Bao, G., Liao, M., Peng, J., Huang, X., Wang, L. (2019). High through-put determination of 28 veterinary antibiotic residues in swine wastewater by one-step dispersive solid phase extraction sample cleanup coupled with ultra-performance liquid chromatography-tandem mass spectrometry. Chemosphere. 230: 337-346. doi: 10.1016/j.chemosphere.2019.05.047
  • Guo, X., Tian, H., Yang, F., Fan, S., Zhang, J., Ma, J., Ai, L., Zhang, Y. (2022). Rapid determination of 103 common veterinary drug residues in milk and dairy products by ultra performance liquid chromatography tandem mass spectrometry. Frontiers in Nutrition. 9: 879518. doi: 10.3389/fnut.2022.879518
  • Zhao, H., Zulkoski, J. and Mastovska, K. (2017). Development and validation of a multiclass, multiresidue method for veterinary drug analysis in infant formula and related ingredients using UHPLC-MS/MS. J. Agri and Food Chem. 65(34): 7268-7287. doi: 10.1021/acs.jafc.7b00271
  • Mohammed, A.M. (2018). UV-Visible spectrophotometric method and validation of organic compounds. E J - ENG. 3(3): 8-11.
  • Kępińska-Pacelik, J., Biel, W., Witkowicz, R., Podsiadło, C. (2023). Mineral and heavy metal content in dry dog foods with different main animal components. Sci.Rep. 13(1): 6082. doi: 10.1038/s41598-023-33224-w
  • Pajarillo, E.A.B., Lee, E., Kang, D.-K. (2021). Trace metals and animal health: Interplay of the gut microbiota with iron, manganese, zinc and copper. Anim. Nut. 7(3): 750-761. doi: 10.1016/j.aninu.2021.03.005
  • Hejna, M., Gottardo, D., Baldi, A., Dell’Orto, V., Cheli, F., Zaninelli, M., Rossi, L. (2018). Nutritional ecology of heavy metals. Animal. 12(10): 2156-2170. doi: 10.1017/S175173111700355X
  • Munnangi, S.R., Youssef, A.A.A., Narala, N., Lakkala, P., Narala, S., Vemula, S.K., Repka, M. (2023). Drug complexes: Perspective from Academic Research and Pharmaceutical Market. Pharm. Res.: 1-22.
  • Đokić, S., Vajtner, Z., Lopotar, N., Mrvoš-Sermek, D., Kamenar, B., Nagl, A. (1995). Complexes of azithromycin with some divalent metal ions. Croat.Chem. Acta, CCA. 68(2): 375-381.
  • Sultana, N., Arayne, M.S., Sabri, R. (2005). Erythromycin synergism with essential and trace elements. Pak J Pharm Sci. 18(2): 35-39.
  • Singh, A. and Kumar, R.S. (2021). Role of Nickel in animal performance: A review
  • Guideline, I.H.T. Validation of analytical procedures: Text and Methodology Q2 (R1), Current Step 4 version, Parent Guideline dated 27 October 1994, (Complementary Guideline on Methodology dated 6 November 1996 incorporated in November 2005). in International Conference on Harmonization, Geneva, Switzerland. 2007.
  • Miller, J., Miller, J.C. (2018). Statistics and chemometrics for analytical chemistry. Pearson education.
  • Walash, M.I., Rizk, M.S., Eid, M.I., Fathy, M.E. (2007). Spectrophotometric determination of four macrolide antibiotics in pharmaceutical formulations and biological fluids via binary com-plex formation with eosin and spectro-photometry. J. AOAC. Int. 90(6): 1579-1587.
  • Rose, J. (1964). Advanced physico-chemical experiments: a textbook of practical physical chemistry and calculations.
  • Hamdan, I. (2003). Comparative in vitro investigations of the interaction between some macrolides and Cu (II), Zn (II) and Fe (II). Die Pharmazie. 58(3): 223-224.
  • Ibrahim, F.A., Wahba, M.E.K., Galal, G.M. (2017). Two spectrophotometric methods for the determination of azithromycin and roxithromycin in pharmaceutical preparations. Eur. J. Chem. 8(3): 203-210. doi: 10.5155/eurjchem.8.3.203-210.1574
  • Khurana, P., Pulicharla, R., Brar, S.K. (2021). Antibiotic-metal complexes in wastewaters: fate and treatment trajectory. Environ. Int. 157: 106863. doi: 10.1016/j.envint.2021.106863
  • Kannaiah, K.P., Sugumaran, A., Chanduluru, H.K., Rathinam, S. (2021). Environmental impact of greenness assessment tools in liquid chromatography–A review. Microchem. J. 170: 106685. doi: 10.1016/j.microc.2021.106685
  • Gałuszka, A., Migaszewski, Z.M., Konieczka, P., Namieśnik, J. (2012). Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC, Trends Anal. Chem. 37: 61-72. doi: 10.1016/j.trac.2012.03.013
  • Płotka-Wasylka, J. (2018) A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index, Talanta. 181: 204-209. doi: 10.1016/j.talanta.2018.01.013
  • Pena-Pereira, F., Wojnowski, W., Tobiszewski, M. (2020). AGREE-Analytical GREEnness metric approach and software. Anal.l chem. 92(14): 10076-10082. doi: 10.1021/acs.analchem.0c01887
  • Mahmoudi, A., Boukhechem, M.S. (2020). Simplified HPLC method for simultaneous determination of erythromycin and tretinoin in topical gel form. J. Sep. Sci. Plus. 3(4): 86-93 doi: 10.1002/sscp.201900093
  • Wadie, M., Abdel-Moety, E.M., Rezk, M.R., Tantawy, M.A. (2021). Eco-friendly chiral HPLC method for determination of alfuzosin enantiomers and solifenacin in their newly pharmaceutical combination: Method optimization via central composite design. Microchem. J. 165: 106095. doi: 10.1016/j.microc.2021.106095
  • Wadie, M., Abdel-Moety, E.M., Rezk, M.R., Marzouk, H.M. (2024). A novel eco-friendly HPLC method with dual detection modes for versatile quantification of dutasteride and silodosin in pharmaceutical formulation, dissolution testing and spiked human plasma. Microchem. J. 197: 109753. doi: 10.1016/j.microc.2023.109753
  • Moaaz, E.M., Mahmoud, A.M., Fayed, A.S., Rezk, M.R., Abdel-Moety, E.M. (2021). Determination of tedizolid phosphate using graphene nanocomposite based solid contact ion selective electrode; green profile assessment by eco-scale and GAPI approach. Electroanalysis. 33(8): 1895-1901. doi: 10.1002/elan.202100067
  • Tantawy, M.A., Weshahy, S.A., Wadie, M., Rezk, M.R. (2021). Eco-friendly spectro-photometric methods for assessment of alfuzosin and solifenacin in their new pharmaceutical formulation; green profile evaluation via eco-scale and GAPI tools. Curr.Pharm.Anal. 17(8): 1093-1103. doi: 10.2174/1573412916999200730005740
  • Rostom, Y., Rezk, M.R., Wadie, M., Abdel-Moety, E.M., Marzouk, H.M. (2024). State-of-the-art mathematically induced filtration approaches for smart spectrophotometric assessment of silodosin and solifenacin mixture in their new challenging formulation: Multi-tool greenness and whiteness evaluation. Spectrochim. Acta - A: Mol. Biomol. Spectrosc. 307: 123650. doi: 10.1016/j.saa.2023.123650
  • Wadie, M., Abdel-Moety, E.M., Rezk, M.R., Marzouk, H.M. (2023). Smartphone-based high-performance thin Layer chromatographic method along with benchtop densitometry for simultaneous quantification of co-formulated dutasteride with silodosin and their residuals on manufacturing equipment's surfaces. B-FOPCU. 61(1): 4.
  • Tantawy, M.A., Weshahy, S.A., Wadie, M., Rezk, M.R. (2020). Novel HPTLC densitometric methods for determination of tamsulosin HCl and tadalafil in their newly formulated dosage form: Comparative study and green profile assessment. Biomed. Chromatogr. 34(8): e4850. doi: 10.1002/bmc.4850
  • Wadie, M., Abdel-Moety, E.M., Rezk, M.R., Marzouk, H.M. (2023). A novel smartphone HPTLC assaying platform versus traditional densitometric method for simultaneous quantification of alfuzosin and solifenacin in their dosage forms as well as monitoring content uniformity and drug residues on the manufacturing equipment. RSC advances. 13(17): 11642-11651. doi: 10.1039/D3RA01211E
  • Nowak, P.M., Wietecha-Posłuszny, R., Pawliszyn, J. (2021). White Analytical Chemistry: An approach to reconcile the principles of Green Analytical Chemistry and functionality. TrAC Trends Anal.chem. 138: 116223. doi: 10.1016/j.trac.2021.116223
  • Balouiri, M., Sadiki, M., Ibnsouda, S.K. (2016). Methods for in vitro evaluating anti-microbial activity: A review. J. Pharm. Anal. 6(2): 71-79. doi: 10.1016/j.jpha.2015.11.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.