15
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Efficient removal of heavy metal ions by modified cellulose prepared from rice husk: Equilibrium isotherms, Kinetics and desorption studies

, &
Pages 298-318 | Received 25 Jan 2024, Accepted 05 May 2024, Published online: 20 May 2024

References

  • Khatri, N., Tyagi, S. (2015). Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Frontiers in Life Science. Vol. 8, No. 1: 23-39. doi: 10.1080/21553769.2014.933716
  • Soliman, M., Rashed, N., Soltan, M. (2023). Aeration, Alum, and Kaolin Ore for Nutrient and Heavy Metal removal Urban wastewater for the purpose of Reuse and Conservation. Pollution. 9(3): 1162-1173.
  • Mitra, S., Chakraborty, A. J., Tareq, A.M., Emran, T.B., Nainu, F., Khusro, A., Idris, A.M., Khandaker, M.U., Osman, H., Alhumaydhi, F.A., Simal-Gandara, J. (2022). Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University-Science. 34: 1-21. doi: 10.1016/j.jksus.2022.101865
  • Hasan, M., Hossain, M.M., Abrarin, S., Kormoker, T., Billah, M.M., Bhuiyan, M.K.A., Akbor, M.A., Salam, S.M.A., Khan, R., Naher, K., Salam, M.A., Ali, M.M., Rahman, M.M., Emran, T.B., Mahmoud, Z., Khandaker, M.U., Siddique, M.A.B. (2023). Heavy metals in popularly sold branded cigarettes in Bangladesh and associated health hazards from inhalation exposure. Environ Sci Pollut Res Int. 30(45): 100828-100844. doi: 10.1007/s11356-023-29491-9
  • Samant, R.A., Gurav, V.L. (2018). A Biosorption of Heavy Metal Ions from effluent using Waste Fish Scale. Asian J. Research Chem. 11(5): 1-3. doi: 10.5958/0974-4150.2018.00136.0
  • Nyamato, G.S. (2020). Perspectives and prospects of chelation extraction of heavy metals from wastewater: A review. Water Science & Technology. 88(1): 47-60. doi: 10.2166/wst.2023.182
  • Elfeghe, S., Sheng, Q., Zhang, Y. (2022). Separation of Lead and Copper Ions in Acidic Media Using an Ion-Exchange Resin with a Thiourea Functional Group. ACS Omega. 7: 13042-13049. doi: 10.1021/acsomega.2c00417
  • Benalia, M.C., Youcef, L., Bouaziz, M.G. (2020). Removal of Heavy Metals from Industrial Wastewater by Chemical Precipitation: Mechanisms and Sludge Characterization. Arabian Journal for Science and Engineering.1-13.
  • Mahmoud, A.E.L., Mostafa, E. (2023). Nano-filtration Membranes for the Removal of Heavy Metals from Aqueous Solutions: Preparations and Applications. Membranes 13. 789: 1-27. doi: 10.3390/membranes13090789
  • Mao, M., Yan, T., Shen, J., Zhang, J., Zhang, D. (2021). Capacitive Removal of Heavy Metal Ions from Wastewater via an Electro-Adsorption and Electro-Reaction Coupling Process. Enviro-nmental Science & Technology. 55: 3333-3340. doi: 10.1021/acs.est.0c07849
  • Crini, G., Lichtfouse, E. (2021). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters. 17: 145-155. doi: 10.1007/s10311-018-0785-9
  • Rashed, M.N., Arfien, F.A., EI-Dowy, F.A. (2020). Adsorption of Heavy metals on chemically modified Muscovite.Aswan University Journal of Environmental Studies (AUJES). 1(2): 183-203. doi: 10.21608/aujes.2020.127586
  • Aziam, R., Stefan, D.S., Nouaa, S., Chiban, Md., Boșomoiu, M. (2024). Adsorption of Metal Ions from Single and Binary Aqueous Systems on Bio-Nanocomposite, Alginate-Clay. Nanomaterials. 362(14): 1-27.
  • Baraskar, P.N., Samant, R.A., Gurav, V.L. (2023). Extraction of Kraft Lignin from waste coconut pith and its application for removal of heavy metal ions from industrial effluent. Analytical Chemistry Letters.13(6): 660-681. doi: 10.1080/22297928.2023.2298459
  • Yu, H., Wang, J., Yu, J-X., Wang, Y., Chi, R.-an. (2020). Effects of surface modification on heavy metal adsorption performance and stability of peanut shell and its extracts lignin, and hemicellulose. Environmental Science and Pollution Research. 1-9.
  • Kaur, J., Sengupta, P., Mukhopadhyay, S. (2022). Critical review of bioadsorption on modified cellulose and removal of divalent metal ions (Cd, Pb and Cu).ACS publications Ind. Eng. Chem. Res. 61(5): 1921-1954. doi: 10.1021/acs.iecr.1c04583
  • Peng, B., Yao, Z., Wang, X., Crombeen, M., Sweeney, D.G., Tam, K.C. (2020). Cellulose-based materials in wastewater treatment of petroleum industry. Green Energy & Enviro-nment. 5: 37-49. doi: 10.1016/j.gee.2019.09.003
  • Oprea, M., Voicu, S.I. (2023). Cellulose Acetate-Based Materials for Water Treatment in the Context of Circular Economy. Water. 1860(15): 1-18.
  • Seddiqi, H., Oliaei, E., Honarkar, H., Jin, J., Geonzon, L.C., Bacabac, R., Nulend, J.K. (2021). Cellulose and its derivatives: towards biomedical applications. 28: 1893-1931.
  • Das, A.M., Ali, A.A., Hazarika, M.P. (2014). Synthesis and characterization of cellulose acetate from rice husk: Eco-friendly condition. Carbohydrate Polymers. 112: 342-349. doi: 10.1016/j.carbpol.2014.06.006
  • Baraskar, P.N., Samant, R.A., Gurav, V.L. (2023). Removal of heavy metal ions using nano-cellulose prepared from rice husk: validation by differential pulse voltammetry. Anal. Chem. Lett. 13(4): 432-450.
  • Homem, N.C., Amorim, M.T.P. (2019). Synthesis of cellulose acetate using as raw material textile wastes. Materials Today: Proceedings. 1-5.
  • Orelma, H., Hokkanen, A., Leppänen, I., et. al. (2019). Optical cellulose fiber made from regenerated cellulose and cellulose for water sensor applications. Cellulose. 1-11.
  • Cheng, M., Qin, Z., Hu, J., et. al. (2021). Facile one2step preparation of acetylated cellulose nanocrystals and their reinforcing function in cellulose acetate film with improved interfacial compatibility. Cellulose. 28: 2137-2148. doi: 10.1007/s10570-020-03663-z
  • Gurav, V.L., Samant, R.A. (2020). Chitosan from Waste Marine Sources Immobilized Silica: Differential Pulse Voltammetric Determination of Heavy Metal Ions from Industrial Effluent. Water Conservation Science and Engineering. 1-7.
  • Zulfiqar, S., Rafique, U., Akhtar, M., Hussain, A., Mansab, S. (2018). Thermodynamic and kinetics study of phosphonium-based cellulose acetate supported ionic liquid membrane: wastewater treatment. Desalination and Water Treatment. 133: 20-27. doi: 10.5004/dwt.2018.22994
  • Kumar, N., Kumar, B., Gupta, H. (2023). Development and Evaluation of Cellulose/Graphene-Oxide Based Composite for Removing Phenol from Aqueous Solutions. Polymers. 572(15): 1-15.
  • Ding, B., Yang, L., Fan, H., You, N. (2022). Cellulose Derivatives Functionalized with Multidentate N Donor Atoms: Comparative Adsorption of Cadmium (II) and Lead (II) Ions from Water. 1-24.
  • Chen, Q., Zheng, J., Wen, L., Yang, C., Zhang, L. (2019). A multi-functional-group modified cellulose for enhanced heavy metal cadmium adsorption: Performance and quantum chemical mechanism. Chemosphere. 224: 509-518. doi: 10.1016/j.chemosphere.2019.02.138
  • Halluin, M.D., Rull-Barrull, J., Bretel, G., Labrugère, C., Le Grognec, E., Felpin, F.X. (2017). Chemically Modified Cellulose Filter Paper for Heavy Metal Remediation in Water. ACS Sustainable Chem. Eng. 5: 1965-1973. doi: 10.1021/acssuschemeng.6b02768
  • Rahaman, Md.H., Islam, Md.A., Islam, Md.M., Rahman, Md.A., Alam, S.M.N. (2021). Biodegradable composite adsorbent of modified cellulose and chitosan to remove heavy metal ions from aqueous solution. Current Research in Green and Sustainable Chemistry. 4: 1-8. doi: 10.1016/j.crgsc.2021.100119
  • Ezeonuegbu, B.A., Ezeonuegbu, D.A., Whong, C.M.Z., Japhet, W.S., Alexiou, A., Elazab, S.T., Qusty, N., Yaro, C.A., Batiha, G.El-S. (2021). Agricultural waste of sugarcane bagasse as efficient adsorbent for lead and nickel removal from untreated wastewater: Biosorption, equilibrium isotherms, kinetics and desorption studies. Biotechnology Reports. 1-10.
  • Singh, P., Sarswat, A., Jr. Pittman, C.U., Mlsna, T., Mohan, D. (2020). Sustainable Low-Concentration Arsenite [As (III)] Removal in Single and Multicomponent Systems Using Hybrid Iron Oxide-Biochar Nanocomposite Adsorbents-A Mechanistic Study. ACS Omega. 5: 2575-2593. doi: 10.1021/acsomega.9b02842
  • Gurav, V.L., Samant, R.A. (2021). Application of Waste Egg Shell for Adsorption of Cd(II) and Pb(II) ions to Protect Environment: Equilibrium, Kinetic and Adsorption Studies. Orient. J. Chem. 37(1): 128-135. doi: 10.13005/ojc/370117
  • Arshad, N., Imran, S. (2020). Indigenous waste plant materials: An easy and cost-effective approach for the removal of heavy metals from water Current Research in Green and Sustainable Chemistry. 3: 1-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.