40
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Molecular Genotyping and Antimicrobial Activities of Secondary Metabolites from Streptomyces sp: Taxonomy, Extraction and Purification

, &
Pages 282-298 | Received 08 Aug 2016, Accepted 02 Nov 2016, Published online: 24 Nov 2016

References

  • Berdy, J. (2005). Bioactive microbial metabolites-a personal view. J. Antibiot. 58: 1–26. doi: 10.1038/ja.2005.1
  • Arasu, V.M, Al-Dhabi, A.N., Saritha, V., Duraipandiyan, V., Muthukumar, C and Kim, J.S. (2013). Antifeedant, larvicidal and growth inhibitory bioactivities of novel polyketide metabolite isolated from Streptomyces sp. AP-123 against Helicoverpa armigera and Spodoptera litura. BMC Microbiology. 13: 105–110. doi: 10.1186/1471-2180-13-105
  • Koehn, F.E., Carter, G.T. (2005). The evolving role of natural products in drug discovery. NatRev. Drug. Discovery. 4: 206–220. doi: 10.1038/nrd1657
  • Baltz, H.R., Marcel Roundtable, F.M. (2006). Is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration? J. Ind. Microbiol. Biotechnol. 33: 507–513. doi: 10.1007/s10295-005-0077-9
  • Antony-Babu, S., Stach, J.E., Goodfellow, M. (2008). Genetic and phenotypic evidence for Streptomyces griseus ecovars isolated from a beach and dune sand system. Antonie.Van. Leeuwen-hoek. 94: 63–74. doi: 10.1007/s10482-008-9246-y
  • Watve, M.G., Tickoo, R., Jog, M.M., Bhole, B.D. (2001). How many antibiotics are produced by the genus Streptomyces? Arch. Microbiol. 176: 386–390. doi: 10.1007/s002030100345
  • Balachandran, C., Duraipandiyan, V., Ignacimuthu, S. (2012).Purification and characterization of protease enzyme from actinomycetes and its cytotoxic effect on cancer cell line (A549). Asian Pacific Journal of Tropical Biomedicine. S392-S400. doi: 10.1016/S2221-1691(12)60195-6
  • Ayuso-Sacido, A., Genilloud, O. (2005). New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microb. Ecol. 49: 10–24. doi: 10.1007/s00248-004-0249-6
  • EI-Nakeeb, M.A., Lechevalier, A.H. (1963). Selective isolation of aerobic actinomycetes. Applied. Microbiol. 11: 75–77.
  • Kuster, E., Williams T. S. (1964). Selection of media for isolation of Streptomyces. Nature. 202: 928–929. doi: 10.1038/202928a0
  • Oskay, M., Tamer, A.U., Azeri, C. (2004). Antibacterial activity of some actinomycetes isolated from farming soils of Turkey. African J. Biotechnol. 3: 441–446. doi: 10.5897/AJB2004.000-2087
  • Locci, R. (1989). Streptomyces and related genera. Bergey’s manual of systematic bacteriology. Baltimore: Williams & Wilkns Company. 2344–2508.
  • Shirling, B.E., Gottlieb.D. (1966). Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16: 313–340. doi: 10.1099/00207713-16-3-313
  • Miller, H.J. (1992). A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbour Laboratory, Cold Spring Harbour, NY, Vol. 1.
  • Pospiech, A., Neumann. (1995). A versatile quick prep of genomic DNA from gram-positive bacteria. Trends. Genet. 11: 217–218. doi: 10.1016/S0168-9525(00)89052-6
  • Lane, D. J. (1991). 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons.
  • Farris, H.M., Olson, J.B. (2007). Detection of Actinobacteria cultivated from environmental samples reveals bias in universal primers. Lett. In. Applied. Microbiol. 45: 376–381. doi: 10.1111/j.1472-765X.2007.02198.x
  • Thompson, D.J., Gibson, J.T., Plewniak, F., Jeanmougin, F., Higgins, G.D. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. NucleicAcids Res. 25: 4876–4882. doi: 10.1093/nar/25.24.4876
  • Saitou, N., Nei, M. (1987). The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol .Evol. 4: 406–425.
  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739. doi: 10.1093/molbev/msr121
  • Jukes, H.T., Cantor, R.C. (1969). Evolution of protein molecules, in: Mammalian Protein metabolism III, Academic Press, London. 21–132.
  • Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39: 783–791. doi: 10.2307/2408678
  • Cook, E.A., Meyers, R.P. (2003). Rapid identification of filamentous actinomycetes to the genus level using genus-specific 16S rRNA gene restriction fragment patterns. International Journal of Systematic and Evolutionary Microbiology. 53: 1907–1915. doi: 10.1099/ijs.0.02680-0
  • Versalovic, J., Schneider, M., de Bruijn, F.J., Lupski, J.R. (1994). Genomic fingerprinting of bacteria using repetitive sequence based PCR (rep-PCR). Meth. Cell Mol. Biol. 5: 25–0.
  • Rajan, M.B., Kannabiran, K. (2014). Extraction and Identification of Antibacterial Secondary Metabolites from Marine Streptomyces sp. VITBRK2. Int. J. Mol. Cell Med. Summer, 3: 130–137.
  • Irena, C.M., Grzelak, M.E. (2011). Bio-autography detection in thin-layer chromatography. J. Chromatogr. A.1218: 2684–2691. doi: 10.1016/j.chroma.2010.12.069
  • Ilic, B.S., Konstantinovic, S.S., Todorovic, Z.B., Lazic, M.L., Veljkovic, V. B., Jokovic, N. (2007). Characterization and antimicrobial activity of the bioactive metabolites in Streptomycetes isolates. Microbiol. 76: 421–428. doi: 10.1134/S0026261707040066
  • Pandey, B., Ghimire, P., Agrawal, V.P. (2004). Studies on the antibacterial activity of actinomycetes isolated from Khumbu region of Mount Everest. J. App. Microbiol, 20: 45–54.
  • Clark, A.C., Chen, C., Ward-Rainey, N., Pettis, S.G. (1998). Diversity within Streptomyces ipomoea Based on Inhibitory Interactions, rep-PCR, and Plasmid Profiles. Phytopathology. 88: 1179–1186. doi: 10.1094/PHYTO.1998.88.11.1179
  • Louws, F.J., Fulbright, D.W., Stephens, C.T., de Bruijin, F.J. (1992). Specific genomic fingerprinting of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl. Environ. Microbiol, 60: 2286–2295.
  • Dastager, S., Li, J.W., Agsar, D., Sulochana, B.M., Tang, K.S., Tian, P.X., Zhi, Y. X. (2006). Streptomyces gulbargensis sp. nov., isolated from soil in Karnataka, India. Antonie van Leeuwenhoek. 91: 99–104. doi: 10.1007/s10482-006-9099-1
  • Dastager, S., Kim, J. C., Lee, C.J., Agsar, D., Park, J.D., Li, J.W. (2008). Streptomyces deccanensis sp. nov., an alkaliphilic species isolated from soil. Int.J.Syst.Evol Microbiol, 58: 1089–1093. doi: 10.1099/ijs.0.65525-0
  • Dastager, S. Agsar, D., Kim, J.C., Li, J.W., Lee, J.C., Park, J.D., Xu, H.L., Tian, P.X., Giang, L.C. (2007). Streptomyces tritolerans sp. nov., a novel actinomycete isolated from soil in Karnataka, India. Antonie van Leeuwenhoek. 92: 391–397. doi: 10.1007/s10482-007-9166-2
  • Thakur, D., Yadav, A., Gogoi, K.B., Bora, C.T. (2007). Isolation and screening of Streptomyces in soil of protected forest areas from the states of Assam and Tripura, India, for antimicrobial metabolites. Journal. De. Mycology. Medical. 17: 242–249. doi: 10.1016/j.mycmed.2007.08.001
  • Desai, P.P., Prabhurajeshwar, C., Kelmani, R.C. (2016). Hydrothermal assisted biosynthesis of silver nanoparticles from Streptomyces sp. GUT 21 (KU500633) and its therapeutic antimicrobial activity. J. Nanostruct. Chem., 6: 235–246 doi: 10.1007/s40097-016-0197-y
  • Provost, F., Laurent, F., Camacho uzcategui, R.L., Boiron, P. (1997). Molecular Study of Persistence of Nocardia asteroides and Nocardia otitidiscaviarum Strains in Patients with Long-Term Nocardiosis. Journal of Clinical Microbiology, 35: 1157–1160.
  • Saravana Kumar, P., Duraipandiyan, V., Ignacimuthu, S.V. (2014). Isolation, screening and partial purification of antimicrobial antibiotics from soil Streptomyces sp. SCA 7. Kaohsiung Journal of Medical Sciences. 30: 435–446. doi: 10.1016/j.kjms.2014.05.006
  • Gurtler, V., Wilson, V.A., Mayall, B.C. (1991). Classification of medically important clostridia using restriction endonuclease site differences of PCR-amplified 16S rDNA. J. Gen Microbiol. 137: 2673–2679. doi: 10.1099/00221287-137-11-2673
  • Harvey, L., Cormier, Y., Beaulieu, C., Akimov, V.N., Mériaux, A., Duchaine, C. (2001). Random amplified ribosomal DNA restriction analysis for rapid identification of thermophilic actinomycete-like bacteria involved in hypersensitivity pneumonitis. Syst. Appl. Microbiol. 24: 277–284. doi: 10.1078/0723-2020-00034
  • Alves, A., Santos, O., Henriques, I., Correia, A. (2002). Evaluation of methods for molecular typing and identification of members of the genus Brevibacterium and other related species. FEMS. Microbiol. Lett. 213: 205–211. doi: 10.1111/j.1574-6968.2002.tb11307.x
  • Steingrube, V.A., Wilson, R.W., Brown, B.A., Jost, K.C., Blacklock, Z., J.L.Gibson L.J., Wallace, J.R. (1997). Rapid identification of the clinically significant species and taxa of aerobic actinomycetes, including Actinomadura, Gordona, Nocardia, Rhodococcus, Streptomyces, and Tsukamurella isolates, by DNA amplification and restriction endonuclease analysis. J. Clin. Microbiol. 35: 817–822.
  • Wilson, R.W., Steingrube, V.A., Brown, B.A., Wallace, R.J. (1998). Clinical application of PCR-restriction enzyme pattern analysis for rapid identification of aerobic actinomycete isolates. J. Clin. Microbiol, 36: 148–152.
  • Laurent, F.J., Provost, F., Boiron, P. (1999). Rapid identification of clinically relevant Nocardia species to genus level by 16S rRNA gene PCR. J. Clin. Microbiol. 37: 99–102.
  • Beyer, S., Kunze, B., Silakowski, B., Müller, R. (1999). Metabolic diversity in myxobacteria: identification of the myxalamid and the stigmatellin biosynthetic gene cluster of Stigmatella aurantiaca Sga15 and a combined polyketide-(poly) peptide gene cluster from the epothilone producing strain Sorangium cellulosum Soc-90. Biochim. Biophys. Acta. 1445: 185–195. doi: 10.1016/S0167-4781(99)00041-X
  • Christiansen, G., Dittmann, E., Ordorika, V.L., Rippka, R., Herdman, M., Börner, T. (2001). Nonribosomal peptide synthase genes occur in most cyanobacterial genera as evidenced by their distribution in axenic strains of the PCC. Arch Microbiol, 176: 452–458. doi: 10.1007/s002030100349
  • Sauser, M., Lu, P., Sangari, R., Kennedy, S., Polishook, J., Bills, G., An, Z. (2002). Estimating polyketide metabolic potential among nonsporulating fungal endophytes of Vaccinium macrocarpon. Mycol Res. 106: 460–470. doi: 10.1017/S095375620200566X
  • Sadowsky, M.J., Kinkel, L.L., Bowers, J.H., Schottel, J. L. (1996). Use of repetitive intergenic DNA sequences to classify pathogenic and disease-suppressive Streptomyces strains. Appl. Environ. Microbiol. 62: 3489–3493.
  • Vijayakumar, R., Selvam, K.P., Muthukumar, C., Thajuddin, N., Panneerselvam, A., Saravanamuthu, R. (2002). Antimicrobial potentiality of a halophilic strain of Streptomyces sp. VPTSA18 isolated from the saltpan environment of Vedaranyam, India. Ann Microbiol, 62: 1039–1047. doi: 10.1007/s13213-011-0345-z
  • Kubo, I., Muroi, H., Kubo, A. (1995). Structural functions of antimicrobial long-chain alcohols and phenols. Bioorg. Med. Chem., 3: 873–880. doi: 10.1016/0968-0896(95)00081-Q
  • Voda, K., Boh, B., Vrtacnik, M. (2004). A quantitative structure antifungal activity relationship study of oxygenated aromatic essential oil compounds using data structuring and PLS regression analysis. J. Mol. Model, 10: 76–84. doi: 10.1007/s00894-003-0174-5
  • Kim, Y.M., Farrah, S., Baney, R.H. (2007). Structure-antimicrobial activity relationship for silanols, a new class of disinfectants, compared with alcohols and phenols. Int. J. Antimicrob. Agents. 29: 217–222. doi: 10.1016/j.ijantimicag.2006.08.036

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.