131
Views
2
CrossRef citations to date
0
Altmetric
Reviews

A Naturally Occurring Flavone (Chrysin): Chemistry, Occurrence, Pharmacokinetic, Toxicity, Molecular Targets and Medicinal Properties

, , , , , & show all
Pages 208-227 | Received 23 Feb 2018, Accepted 09 May 2018, Published online: 07 Sep 2018

References

  • Siess, M.H., Le Bon, A.M., Canivenc-Lavier, M.C., Amiot, M.J., Sabatier, S., Aubert, S.Y. and Suschetet, M. (1996). Flavonoids of Honey and Propolis: Characterization and Effects on Hepatic Drug-Metabolizing Enzymes and Benzo a. pyrene” DNA Binding in Rats. Journal of Agricultural and Food Chemistry. 44(8): 2297–2301. doi: 10.1021/jf9504733
  • Pichichero, E., Cicconi, R., Mattei, M., Muzi, M.G. and Canini, A. (2010). Acacia honey and chrysin reduce proliferation of melanoma cells through alterations in cell cycle progression. International Journal of Oncology. 37(4): 973–981.
  • Harminder, V.S. and Chaudhary, A.K. (2011). A review on the taxonomy, ethnobotany, chemistry and pharmacology of Oroxylum indicum vent. Indian Journal of Pharmaceutical Sciences. 73(5): 483. doi: 10.4103/0250-474X.98981
  • Bajgai, S.P., Prachyawarakorn, V., Mahidol, C., Ruchirawat, S. and Kittakoop, P. (2011). Hybrid flavan-chalcones, aromatase and lipoxygenase inhibitors, from Desmos cochinchinensis. Phytochemistry. 72(16): 2062–2067. doi: 10.1016/j.phytochem.2011.07.002
  • Mamadalieva, N.Z., Herrmann, F., El Readi, M.Z., Tahrani, A., Hamoud, R., Egamberdieva, D.R. and Wink, M. (2011). Flavonoids in Scutellaria immaculata and S. ramosissima (Lamiaceae) and their biological activity. Journal of Pharmacy and Pharmacology. 63(10): 1346–1357.
  • Pereira, O.R., Silva, A.M., Domingues, M.R. and Cardoso, S.M. (2012). Identification of phenolic constituents of Cytisus multiflorus. Food Chemistry. 131(2): 652–659. doi: 10.1016/j.foodchem.2011.09.045
  • Cho, H., Yun, C.W., Park, W.K., Kong, J.Y., Kim, K.S., Park, Y. and Kim, B.K. (2004). Modulation of the activity of pro-inflammatory enzymes, COX-2 and iNOS, by chrysin derivatives. Pharmacological Research. 49(1): 37–43. doi: 10.1016/S1043-6618(03)00248-2
  • Lapidot, T., Walker, M.D. and Kanner, J. (2002). Antioxidant and prooxidant effects of phenolics on pancreatic β-cells in vitro. Journal of agricultural and food chemistry. 50(25): 7220–7225. doi: 10.1021/jf020615a
  • Woo, K.J., Jeong, Y.J., Inoue, H., Park, J.W. and Kwon, T.K. (2005). Chrysin suppresses lipopolysaccharide induced cyclooxygenase 2 expression through the inhibition of nuclear factor for IL 6 (NF IL6) DNA binding activity. FEBS Letters. 579(3): 705–711. doi: 10.1016/j.febslet.2004.12.048
  • Lirdprapamongkol, K., Sakurai, H., Abdelhamed, S., Yokoyama, S., Athikomkulchai, S., Viriyaroj, A. and Saiki, I. (2013). Chrysin overcomes TRAIL resistance of cancer cells through Mcl-1 downregulation by inhibiting STAT3 phosphorylation. International journal of oncology. 43(1): 329–337. doi: 10.3892/ijo.2013.1926
  • Dou, W., Zhang, J., Zhang, E., Sun, A., Ding, L., Chou, G. and Mani, S. (2013). Chrysin ameliorates chemically induced colitis in the mouse through modulation of a PXR/NF-κB signaling pathway. Journal of Pharmacology and Experimental Therapeutics. 345(3): 473–482. doi: 10.1124/jpet.112.201863
  • Bae, Y., Lee, S. and Kim, S.H. (2011). Chrysin suppresses mast cell-mediated allergic inflammation: involvement of calcium, caspase-1 and nuclear factor-κB. Toxicology and Applied Pharmacology. 254(1): 56–64. doi: 10.1016/j.taap.2011.04.008
  • Kaidama, W.M. and Gacche, R.N. (2015). Anti-inflammatory activity of chrysin in acute and chronic phases of inflammation in Guinea Pigs. International Journal of Scientific and Research Publications. 5(2): 427–431.
  • Lee, J.K., Kim, S.Y., Kim, Y.S., Lee, W.H., Hwang, D.H. and Lee, J.Y. (2009). Suppression of the TRIF-dependent signaling pathway of Toll-like receptors by luteolin. Biochemical Pharmacology. 77(8): 1391–1400. doi: 10.1016/j.bcp.2009.01.009
  • Zhang, K., Ge, Z., Xue, Z., Huang, W., Mei, M., Zhang, Q. and Zhang, L. (2015). Chrysin suppresses human CD14+ monocyte-derived dendritic cells and ameliorates experimental autoimmune encephalomyelitis. Journal of Neuroimmunology. 288: 13–20. doi: 10.1016/j.jneuroim.2015.08.017
  • Wadibhasme, P.G., Ghaisas, M.M. and Thakurdesai, P.A. (2011). Anti-asthmatic potential of chrysin on ovalbumin-induced bronchoalveolar hyperresponsiveness in rats. Pharmaceutical Biology. 49(5): 508–515. doi: 10.3109/13880209.2010.521754
  • Du, Q., Gu, X., Cai, J., Huang, M. and Su, M. (2012). Chrysin attenuates allergic airway inflammation by modulating the transcription factors T-bet and GATA-3 in mice. Molecular Medicine Reports. 6(1), 100–104.
  • Fu, B., Xue, J., Li, Z., Shi, X., Jiang, B.H. and Fang, J. (2007). Chrysin inhibits expression of hypoxia-inducible factor-1á through reducing hypoxia-inducible factor-1α stability and inhibiting its protein synthesis. Molecular Cancer Therapeutics. 6(1): 220–226. doi: 10.1158/1535-7163.MCT-06-0526
  • Sun, L.P., Chen, A.L., Hung, H.C., Chien, Y.H., Huang, J.S., Huang, C.Y. and Chen, C.N. (2012). Chrysin: a histone deacetylase 8 inhibitor with anticancer activity and a suitable candidate for the standardization of Chinese propolis. Journal of Agricultural and Food Chemistry. 60(47): 11748–11758. doi: 10.1021/jf303261r
  • Russo, P., Del Bufalo, A. and Cesario, A. (2012). Flavonoids acting on DNA topoisomerases: recent advances and future perspectives in cancer therapy. Current Medicinal Chemistry. 19(31): 5287–5293. doi: 10.2174/092986712803833272
  • Zeng, W., Yan, Y., Zhang, F., Zhang, C. and Liang, W. (2013). Chrysin promotes osteogenic differentiation via ERK/MAPK activation. Protein and Cell. 4(7): 539–547. doi: 10.1007/s13238-013-3003-3
  • Ismail, T.A., Soliman, M.M., Nassan, M.A. and Mohamed, D.I. (2015). Antihypercholesterolemic effects of mushroom, chrysin, curcumin and omega-3 in experimental hypercholesterolemic rats. Journal of Food and Nutrition Research. 3(2): 77–87. doi: 10.12691/jfnr-3-2-1
  • Gresa Arribas, N., Serratosa, J., Saura, J. and Solà, C. (2010). Inhibition of CCAAT/enhancer binding protein δ expression by chrysin in microglial cells results in anti inflammatory and neuroprotective effects. Journal of Neurochemistry. 115(2): 526–536. doi: 10.1111/j.1471-4159.2010.06952.x
  • Nabavi, S.F., Braidy, N., Habtemariam, S., Orhan, I.E., Daglia, M., Manayi, A. and Nabavi, S.M. (2015). Neuroprotective effects of chrysin: from chemistry to medicine. Neurochemistry International. 90: 224–231. doi: 10.1016/j.neuint.2015.09.006
  • Kang, M.K., Park, S.H., Choi, Y.J., Shin, D. and Kang, Y.H. (2015). Chrysin inhibits diabetic renal tubulointerstitial fibrosis through blocking epithelial to mesenchymal transition. Journal of Molecular Medicine. 93(7): 759–772. doi: 10.1007/s00109-015-1301-3
  • Premalatha, M. and Parameswari, C.S. (2012). Renoprotective effect of chrysin (5, 7 dihydroxy flavone) in streptozotocin induced diabetic nephropathy in rats. International Journal of Pharmacy and Pharmaceutical Sciences. 4(3): 241–247.
  • Ahad, A., Ganai, A.A., Mujeeb, M. and Siddiqui, W.A. (2014). Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats. Toxicology and Applied Pharmacology. 279(1): 1–7. doi: 10.1016/j.taap.2014.05.007
  • Liang, Y.C., Tsai, S.H., Tsai, D.C., Lin-Shiau, S.Y. and Lin, J.K. (2001). Suppression of inducible cyclooxygenase and nitric oxide synthase through activation of peroxisome proliferator activated receptor ã by flavonoids in mouse macrophages. FEBS Letters. 496(1): 12–18. doi: 10.1016/S0014-5793(01)02393-6
  • Villar, I.C., Jimenez, R., Galisteo, M., Garcia-Saura, M.F., Zarzuelo, A. and Duarte, J. (2002). Effects of chronic chrysin treatment in spontaneously hypertensive rats. Planta Medica. 68(9): 847–850. doi: 10.1055/s-2002-34400
  • Testai, L., Martelli, A., Cristofaro, M., Breschi, M.C. and Calderone, V. (2013). Cardioprotective effects of different flavonoids against myocardial ischaemia/reperfusion injury in L angendorff perfused rat hearts. Journal of Pharmacy and Pharmacology. 65(5): 750–756. doi: 10.1111/jphp.12032
  • Narayana, K.R., Reddy, M.S., Chaluvadi, M.R. and Krishna, D.R. (2001). Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential. Indian Journal of Pharmacology. 33(1): 2–16.
  • Chen, C.C., Chow, M.P., Huang, W.C., Lin, Y.C. and Chang, Y.J. (2004). Flavonoids inhibit tumor necrosis factor-á-induced up-regulation of intercellular adhesion molecule-1 (ICAM-1) in respiratory epithelial cells through activator protein-1 and nuclear factor-κB: structure-activity relationships. Molecular Pharmacology. 66(3): 683–693.
  • Lotito, S.B. and Frei, B. (2006). Dietary flavonoids attenuate TNFα-induced adhesion molecule expression in human aortic endothelial cells: Structure-function relationships and activity after first-pass metabolism. Journal of Biological Chemistry. 281: 37102–37110. doi: 10.1074/jbc.M606804200
  • Yao, L.H., Jiang, Y.M., Shi, J., Tomas-Barberan, F.A., Datta, N., Singanusong, R. and Chen, S.S. (2004). Flavonoids in food and their health benefits. Plant Foods for Human Nutrition. 59(3): 113–122. doi: 10.1007/s11130-004-0049-7
  • Manach, C., Scalbert, A., Morand, C., Rémésy, C. and Jiménez, L. (2004). Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition. 79(5): 727–747. doi: 10.1093/ajcn/79.5.727
  • Crespy, V., Morand, C., Besson, C., Manach, C., Deìmigneì, C. and Remesy, C. (2001). Comparison of the intestinal absorption of quercetin, phloretin and their glucosides in rats. The Journal of Nutrition. 131(8): 2109–2114. doi: 10.1093/jn/131.8.2109
  • Spencer, J.P., El Mohsen, M.M.A. and Rice-Evans, C. (2004). Cellular uptake and metabolism of flavonoids and their metabolites: implications for their bioactivity. Archives of Biochemistry and Biophysics. 423(1): 148–161. doi: 10.1016/j.abb.2003.11.010
  • Heim, K.E., Tagliaferro, A.R. and Bobilya, D.J. (2002). Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. The Journal of nutritional biochemistry. 13(10): 572–584. doi: 10.1016/S0955-2863(02)00208-5
  • Zhang, L., Zuo, Z. and Lin, G. (2007). Intestinal and hepatic glucuronidation of flavonoids. Molecular Pharmaceutics, 4(6): 833–845. doi: 10.1021/mp700077z
  • Walle, T., Otake, Y., Brubaker, J.A., Walle, U.K. and Halushka, P.V. (2001). Disposition and metabolism of the flavonoid chrysin in normal volunteers. British Journal of Clinical Pharmacology. 51(2): 143–146. doi: 10.1111/j.1365-2125.2001.01317.x
  • Setchell, K.D., Brown, N.M., Desai, P., Zimmer-Nechemias, L., Wolfe, B.E., Brashear, W.T. and Heubi, J.E. (2001). Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. The Journal of Nutrition. 131(4): 1362S–1375S. doi: 10.1093/jn/131.4.1362S
  • Walle, U.K., French, K.L., Walgren, R.A. and Walle, T. (1999). Transport of genistein-7-glucoside by human intestinal CACO-2 cells: potential role for MRP2. Research Communications in Molecular Pathology and Pharmacology. 103(1): 45–56.
  • Adachi, Y., Suzuki, H., Schinkel, A.H. and Sugiyama, Y. (2005). Role of breast cancer resistance protein (Bcrp1/Abcg2) in the extrusion of glucuronide and sulfate conjugates from enterocytes to intestinal lumen. Molecular Pharmacology. 67(3): 923–928. doi: 10.1124/mol.104.007393
  • Ge, S., Gao, S., Yin, T. and Hu, M. (2015). Determination of pharmacokinetics of chrysin and its conjugates in wild-type FVB and Bcrp1 knockout mice using a validated LC-MS/MS method. Journal of Agricultural and Food Chemistry. 63(11): 2902–2910. doi: 10.1021/jf5056979
  • Tobin, P.J., Beale, P., Noney, L., Liddell, S., Rivory, L.P. and Clarke, S. (2006). A pilot study on the safety of combining chrysin, a non-absorbable inducer of UGT1A1, and irinotecan (CPT-11) to treat metastatic colorectal cancer. Cancer Chemotherapy and Pharmacology. 57(3): 309–316. doi: 10.1007/s00280-005-0053-0
  • Zheng, H., Li, S., Pu, Y., Lai, Y., He, B. and Gu, Z. (2014). Nanoparticles generated by PEG-Chrysin conjugates for efficient anticancer drug delivery. European Journal of Pharmaceutics and Biopharmaceutics. 87(3): 454–460. doi: 10.1016/j.ejpb.2014.03.011
  • Walle, T., Ta, N., Kawamori, T., Wen, X., Tsuji, P.A. and Walle, U.K. (2007). Cancer chemopreventive properties of orally bioavailable flavonoids-methylated versus unmethylated flavones. Biochemical Pharmacology. 73(9): 1288–1296. doi: 10.1016/j.bcp.2006.12.028
  • Resende, F.A., Vilegas, W., Dos Santos, L.C. and Varanda, E.A. (2012). Mutagenicity of flavonoids assayed by bacterial reverse mutation (Ames) test. Molecules. 17(5): 5255–5268. doi: 10.3390/molecules17055255
  • Uhl, M., Ecker, S., Kassie, F., Lhoste, E., Chakraborty, A., Mohn, G. and Knasmüller, S. (2003). Effect of chrysin, a flavonoid compound, on the mutagenic activity of 2-amino-1-methyl-6-phenylimidazo 4, 5-b. pyridine (PhIP) and benzo (a) pyrene (B (a) P) in bacterial and human hepatoma (HepG2) cells. Archives of Toxicology. 77(8): 477–484. doi: 10.1007/s00204-003-0469-4
  • Oliveira, G.A.R., Ferraz, E.R.A., Souza, A.O., Lourenço, R.A., Oliveira, D.P.D, and Dorta, D.J. (2012). Evaluation of the mutagenic activity of chrysin, a flavonoid inhibitor of the aromatization process. Journal of Toxicology and Environmental Health. Part A, 75(16–17): 1000–1011. doi: 10.1080/15287394.2012.696517
  • Yar Khan, H., Zubair, H., Fahad Ullah, M., Ahmad, A. and Mumtaz Hadi, S. (2012). A prooxidant mechanism for the anticancer and chemopreventive properties of plant polyphenols. Current Drug Targets. 13(14): 1738–1749. doi: 10.2174/138945012804545560
  • Joshi, D., Kumar, M.D., Kumar, S.A. and Sangeeta, S. (2014). Reversal of methylmercury-induced oxidative stress, lipid peroxidation, and DNA damage by the treatment of N-acetyl cysteine: a protective approach. Journal of Environmental Pathology, Toxicology and Oncology. 33(2): 167–182. doi: 10.1615/JEnvironPatholToxicolOncol.2014010291
  • Tsuji, P.A. and Walle, T. (2008). Cytotoxic effects of the dietary flavones chrysin and apigenin in a normal trout liver cell line. Chemico-biological Interactions. 171(1): 37–44. doi: 10.1016/j.cbi.2007.08.007
  • Gardner, I., Popovic, M., Zahid, N. and Uetrecht, J.P. (2005). A comparison of the covalent binding of clozapine, procainamide, and vesnarinone to human neutrophils in vitro and rat tissues in vitro and in vivo. Chemical Research in Toxicology. 18(9): 1384–1394. doi: 10.1021/tx050095o
  • Kagan, V.E., Kuzmenko, A.I., Tyurina, Y.Y., Shvedova, A.A., Matsura, T. and Yalowich, J.C. (2001). Pro-oxidant and antioxidant mechanisms of etoposide in HL-60 cells: role of myeloperoxidase. Cancer Research. 61(21): 7777–7784.
  • Noh, K., Do Gyeong Oh, M.R.N., Jeong, K S., Choi, Y., Kang, M.J., Kang, W. and Jeong, T.C. (2016). Pharmacokinetic interaction of chrysin with caffeine in rats. Biomolecules and Therapeutics. 24(4): 446. doi: 10.4062/biomolther.2015.197
  • Pushpavalli, G., Kalaiarasi, P., Veeramani, C. and Pugalendi, K.V. (2010). Effect of chrysin on hepatoprotective and antioxidant status in D-galactosamine-induced hepatitis in rats. European Journal of Pharmacology. 631(1–3): 36–41. doi: 10.1016/j.ejphar.2009.12.031
  • Zanoli, P., Avallone, R. and Baraldi, M. (2000). Behavioral characterisation of the flavonoids apigenin and chrysin. Fitoterapia. 71: S117–S123. doi: 10.1016/S0367-326X(00)00186-6
  • El Bassossy, H.M., Abo Warda, S.M. and Fahmy, A. (2013). Chrysin and luteolin attenuate diabetes induced impairment in endothelial dependent relaxation: effect on lipid profile, AGEs and NO generation. Phytotherapy Research. 27(11): 1678–1684. doi: 10.1002/ptr.4917
  • Wong, W.T., Ng, C.H., Tsang, S.Y., Huang, Y. and Chen, Z.Y. (2011). Relative contribution of individual oxidized components in ox-LDL to inhibition on endothelium-dependent relaxation in rat aorta. Nutrition, Metabolism and Cardiovascular Diseases. 21(3): 157–164. doi: 10.1016/j.numecd.2008.12.017
  • Qian, L.B., Wang, H.P., Chen, Y., Chen, F.X., Ma, Y.Y., Bruce, I.C. and Xia, Q. (2010). Luteolin reduces high glucose-mediated impairment of endothelium-dependent relaxation in rat aorta by reducing oxidative stress. Pharmacological Research. 61(4): 281–287. doi: 10.1016/j.phrs.2009.10.004
  • Villar, I.C., Vera, R., Galisteo, M., O’Valle, F., Romero, M., Zarzuelo, A. and Duarte, J., (2005). Endothelial nitric oxide production stimulated by the bioflavonoid chrysin in rat isolated aorta. Planta Medica. 71: 829–834. doi: 10.1055/s-2005-871296
  • Fernández-Real, J.M., Vendrell, J., García, I., Ricart, W. and Vallès, M. (2012). Structural damage in diabetic nephropathy is associated with TNF-α system activity. Acta Diabetologica. 49(4): 301–305. doi: 10.1007/s00592-011-0349-y
  • DiPetrillo, K. and Gesek, F.A. (2004). Pentoxifylline ameliorates renal tumor necrosis factor expression, sodium retention, and renal hypertrophy in diabetic rats. American Journal of Nephrology. 24(3): 352–359. doi: 10.1159/000079121
  • Hanhineva, K., Törrönen, R., Bondia-Pons, I., Pekkinen, J., Kolehmainen, M., Mykkänen, H. and Poutanen, K. (2010). Impact of dietary polyphenols on carbohydrate metabolism. International Journal of Molecular Sciences, 11(4): 1365–1402. doi: 10.3390/ijms11041365
  • Satyanarayana, K., Sravanthi, K., Shaker, I.A., Ponnulakshmi, R. and Selvaraj, J. (2015). Role of chrysin on expression of insulin signaling molecules. Journal of Ayurveda and Integrative Medicine. 6(4): 248. doi: 10.4103/0975-9476.157951
  • Rehman, M.U., Tahir, M., Khan, A.Q., Khan, R., Lateef, A., Qamar, W. and Sultana, S. (2013). Chrysin suppresses renal carcinogenesis via amelioration of hyperproliferation, oxidative stress and inflammation: plausible role of NF-κB. Toxicology Letters. 216(2–3): 146–158. doi: 10.1016/j.toxlet.2012.11.013
  • Kim, J.E., Lee, M.H., Nam, D.H., Song, H.K., Kang, Y.S., Lee, J.E. and Han, K.H. (2013). Celastrol, an NF-κB inhibitor, improves insulin resistance and attenuates renal injury in db/db mice. PloS One. 8(4): e62068. doi: 10.1371/journal.pone.0062068
  • Fitzgerald, D.C., Meade, K.G., McEvoy, A.N., Lillis, L., Murphy, E.P., MacHugh, D.E. and Baird, A.W. (2007). Tumour necrosis factor-a (TNF-a) increases nuclear factor kB (NFκB) activity in and interleukin-8 (IL-8) release from bovine mammary epithelial cells. Veterinary Immunology and Immunopathology. 116: 59–68. doi: 10.1016/j.vetimm.2006.12.008
  • Mezzano, S., Aros, C., Droguett, A., Burgos, M.E., Ardiles, L., Flores, C. and Egido, J. (2004). NF-κB activation and overexpression of regulated genes in human diabetic nephropathy. Nephrology Dialysis Transplantation. 19(10): 2505–2512. doi: 10.1093/ndt/gfh207
  • Fonseca, V. (2003). Clinical significance of targeting postprandial and fasting hyperglycemia in managing type 2 diabetes mellitus. Current Medical Research and Opinion. 19(7): 635–631. doi: 10.1185/030079903125002351
  • Sirovina, D., Oršolic, N., Konèic, M.Z., Kovaèevic, G., Benkovic, V. and Gregorovic, G. (2013). Quercetin vs chrysin: effect on liver histopathology in diabetic mice. Human and Experimental Toxicology. 32(10): 1058–1066. doi: 10.1177/0960327112472993
  • Abo-Salem, O.M., El-Edel, R.H., Harisa, G.E., El-Halawany, N. and Ghonaim, M.M. (2009). Experimental diabetic nephropathy can be prevented by propolis: effect on metabolic disturbances and renal oxidative parameters. Pakistan Journal of Pharmaceutical Sciences. 22(2): 205–210.
  • Samarghandian, S., Azimi-Nezhad, M., Samini, F. and Farkhondeh, T. (2015). Chrysin treatment improves diabetes and its complications in liver, brain, and pancreas in streptozotocin-induced diabetic rats. Canadian Journal of Physiology and Pharmacology. 94(4): 388–393. doi: 10.1139/cjpp-2014-0412
  • Barcelos, G.R.M., Angeli, J.P.F., Serpeloni, J.M., Grotto, D., Rocha, B.A., Bastos, J.K. and Júnior, F.B. (2011). Quercetin protects human-derived liver cells against mercury-induced DNA-damage and alterations of the redox status. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 726(2): 109–115. doi: 10.1016/j.mrgentox.2011.05.011
  • Serpeloni, J.M., Barcelos, G.R.M., Angeli, J.P.F., Mercadante, A.Z., Bianchi, M.L.P. and Antunes, L.M.G. (2012). Dietary carotenoid lutein protects against DNA damage and alterations of the redox status induced by cisplatin in human derived HepG2 cells. Toxicology in Vitro. 26(2): 288–294. doi: 10.1016/j.tiv.2011.11.011
  • Lukaèínová, A., Moj•iš, J., Beòaèka, R., Keller, J., Maguth, T., Kurila, P. and Ništiar, F. (2008). Preventive effects of flavonoids on alloxan-induced diabetes mellitus in rats. Acta Veterinaria Brno. 77(2): 175–182. doi: 10.2754/avb200877020175
  • Benkovic, V., Orsolic, N., Kne•evic, A.H., Ramic, S., Ðikic, D., Bašic, I. and Kopjar, N. (2008). Evaluation of the radioprotective effects of propolis and flavonoids in gamma-irradiated mice: the alkaline comet assay study. Biological and Pharmaceutical Bulletin. 31(1): 167–172. doi: 10.1248/bpb.31.167
  • Ciftci, O., Ozdemir, I., Vardi, N., Beytur A. and Oguz F. (2012). Ameliorating effects of quercetin and chrysin on 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced nephrotoxicity in rats. Toxicology and Industrial Health. 28: 947–954. doi: 10.1177/0748233711430978
  • Zhang, Y., Gao, Z., Liu, J. and Xu, Z. (2011). Protective effects of baicalin and quercetin on an iron-overloaded mouse: comparison of liver, kidney and heart tissues. Natural Product Research. 25(12): 1150–1160. doi: 10.1080/14786419.2010.495070
  • Zarzecki, M.S., Araujo, S.M., Bortolotto, V.C., de Paula, M.T., Jesse, C.R. and Prigol, M. (2014). Hypolipidemic action of chrysin on Triton WR-1339-induced hyperlipidemia in female C57BL/6 mice. Toxicology Reports. 1: 200–208. doi: 10.1016/j.toxrep.2014.02.003
  • Choi, J.H. and Yun, J.W. (2016). Chrysin induces brown fat-like phenotype and enhances lipid metabolism in 3T3-L1 adipocytes. Nutrition. 32(9), 1002–1010. doi: 10.1016/j.nut.2016.02.007
  • Lee, J.Y. and Park, W. (2015). Anti-inflammatory effect of wogonin on RAW 264.7 mouse macrophages induced with polyinosinic-polycytidylic acid. Molecules. 20(4): 6888–6900. doi: 10.3390/molecules20046888
  • Caivano, M. and Cohen, P. (2000). Role of mitogen-activated protein kinase cascades in mediating lipopolysaccharide-stimulated induction of cyclooxygenase-2 and IL-1β in RAW264 macrophages. The Journal of Immunology. 164(6): 3018–3025. doi: 10.4049/jimmunol.164.6.3018
  • Jiang, H., Xia, Q., Wang, X., Song, J. and Bruce, I.C. (2005). Luteolin induces vasorelaxion in rat thoracic aorta via calcium and potassium channels. Die Pharmazie-An International Journal of Pharmaceutical Sciences. 60(6): 444–447.
  • Zhang, T., Chen, X., Qu, L., Wu, J., Cui, R. and Zhao, Y. (2004). Chrysin and its phosphate ester inhibit cell proliferation and induce apoptosis in Hela cells. Bioorganic and Medicinal Chemistry. 12(23): 6097–6105. doi: 10.1016/j.bmc.2004.09.013
  • Zhou, C., Tabb, M.M., Nelson, E.L., Grün, F., Verma, S., Sadatrafiei, A. and Blumberg, B. (2006). Mutual repression between steroid and xenobiotic receptor and NF-κB signaling pathways links xenobiotic metabolism and inflammation. The Journal of Clinical Investigation. 116(8): 2280–2289. doi: 10.1172/JCI26283
  • Shah, Y.M., Ma, X., Morimura, K., Kim, I. and Gonzalez, F.J. (2007). Pregnane X receptor activation ameliorates DSS-induced inflammatory bowel disease via inhibition of NF-κB target gene expression. American Journal of Physiology-Gastrointestinal and Liver Physiology. 292(4), G1114-G1122. doi: 10.1152/ajpgi.00528.2006
  • Shin, E.K., Kwon, H.S., Kim, Y.H., Shin, H.K. and Kim, J.K. (2009). Chrysin, a natural flavone, improves murine inflammatory bowel diseases. Biochemical and Biophysical Research Communications. 381(4): 502–507. doi: 10.1016/j.bbrc.2009.02.071
  • Weng, M.S., Ho, Y.S. and Lin, J.K. (2005). Chrysin induces G1 phase cell cycle arrest in C6 glioma cells through inducing p21Waf1/Cip1 expression: involvement of p38 mitogen-activated protein kinase. Biochemical Pharmacology. 69(12): 1815–1827. doi: 10.1016/j.bcp.2005.03.011
  • Kachadourian, R., Leitner, H.M. and Day, B.J. (2007). Selected flavonoids potentiate the toxicity of cisplatin in human lung adenocarcinoma cells: a role for glutathione depletion. International Journal of Oncology. 31(1): 161–168.
  • Li, X., Huang, Q., Ong, C.N., Yang, X.F. and Shen, H.M. (2010). Chrysin sensitizes tumor necrosis factor-α-induced apoptosis in human tumor cells via suppression of nuclear factor-kappaB. Cancer Letters. 293(1): 109–116. doi: 10.1016/j.canlet.2010.01.002
  • Deng, X., Zhao, Z., Xiong, S., Xiong, R., Liu, J., Wang, Z. and Chen, Y. (2017). Synthesis and evaluation of antitumour activity in vitro and in vivo of chrysin salicylate derivatives. Natural Product Research. 1–9.
  • Vasudevan, M., Gunnam, K.K. and Parle, M. (2007). Antinociceptive and anti-inflammatory effects of Thespesia populnea bark extract. Journal of Ethnopharmacology. 109(2): 264–270. doi: 10.1016/j.jep.2006.07.025
  • Kim, H., Son, K., Chang, H. and Kang, S. (2000). Effects of naturally occurring flavonoids on inflammatory responses and their action mechanisms. Natural Product Sciences. 6(4): 170–178.
  • Sousa, C.R. (2004). Activation of dendritic cells: translating innate into adaptive immunity. Current Opinion in Immunology. 16(1): 21–25. doi: 10.1016/j.coi.2003.11.007
  • Visintin, A., Mazzoni, A., Spitzer, J.H., Wyllie, D.H., Dower, S.K. and Segal, D.M. (2001). Regulation of Toll-like receptors in human monocytes and dendritic cells. The Journal of Immunology. 166(1): 249–255. doi: 10.4049/jimmunol.166.1.249
  • Macagno, A., Napolitani, G., Lanzavecchia, A. and Sallusto, F. (2007). Duration, combination and timing: the signal integration model of dendritic cell activation. Trends in Immunology. 28(5): 227–233. doi: 10.1016/j.it.2007.03.008
  • Hougee, S., Sanders, A., Faber, J., Graus, Y.M., van den Berg, W.B., Garssen, J. and Hoijer, M.A. (2005). Decreased pro-inflammatory cytokine production by LPS-stimulated PBMC upon in vitro incubation with the flavonoids apigenin, luteolin or chrysin, due to selective elimination of monocytes/macrophages. Biochemical Pharmacology. 69(2): 241–248. doi: 10.1016/j.bcp.2004.10.002
  • Diveu, C., McGeachy, M.J. and Cua, D.J. (2008). Cytokines that regulate autoimmunity. Current Opinion in Immunology. 20(6): 663–668. doi: 10.1016/j.coi.2008.09.003
  • Kebir, H., Ifergan, I., Alvarez, J.I., Bernard, M., Poirier, J., Arbour, N. and Prat, A. (2009). Preferential recruitment of interferon γ-expressing TH17 cells in multiple sclerosis. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 66(3): 390–402. doi: 10.1002/ana.21748
  • Shen, Y., Tian, P., Li, D., Wu, Y., Wan, C., Yang, T. and Wen, F. (2015). Chrysin suppresses cigarette smoke-induced airway inflammation in mice. International Journal of Clinical and Experimental Medicine. 8(2): 2001.
  • Ha, S.K., Moon, E. and Kim, S.Y. (2010). Chrysin suppresses LPS-stimulated proinflammatory responses by blocking NF-κB and JNK activations in microglia cells. Neuroscience Letters. 485(3): 143–147. doi: 10.1016/j.neulet.2010.08.064
  • Harasstani, O.A., Moin, S., Tham, C.L., Liew, C.Y., Ismail, N., Rajajendram, R. and Israf, D.A. (2010). Flavonoid combinations cause synergistic inhibition of proinflammatory mediator secretion from lipopolysaccharide-induced RAW 264.7 cells. Inflammation Research. 59(9): 711–721. doi: 10.1007/s00011-010-0182-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.