48
Views
0
CrossRef citations to date
0
Altmetric
Articles

Gibberellic Acid Content of Spinach in Relation to Photoperiod, Temperature, and Flower Induction

&
Pages 393-406 | Received 28 May 2018, Accepted 29 Oct 2018, Published online: 28 Nov 2018

References

  • Corbesier, L., Coupland, G. (2006). The quest for florigen: a review of recent progress. Journal of Experimental Botany. 57: 3395–3403. doi: 10.1093/jxb/erl095
  • Suarez-Lopez, P. (2005). Long-range signaling in plant reproductive development. International Journal of Developmental Biology. 49: 761–771. doi: 10.1387/ijdb.052002ps
  • Ayre, B.G., Turgeon, R. (2004). Graft Transmission of a floral stimulant derived from Constans. Plant Physiology. 35: 2271–2278. doi: 10.1104/pp.104.040592
  • Kobayashi, Y., Weigel, D. (2007). Move on up, it’s time for change-mobile signals controlling photoperiod-dependent flowering. Genes Development. 21: 2371–2384. doi: 10.1101/gad.1589007
  • Turck, F., Fornara, F, Coupland, G. (2008). Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annual Review of Plant Biology. 59: 573–594. doi: 10.1146/annurev.arplant.59.032607.092755
  • Zeevaart, J.A.D. (2008). Leaf-produced floral signals. Current Opinion in Plant Biology. 11: 541–547. doi: 10.1016/j.pbi.2008.06.009
  • Lang, A. (1984). Die photoperiodische regulation von forderung und hemmung der blütenbildung. Berichte der Deutschen Botanischen Gesellschaft. 97: 293–314.
  • Bergman, M., Varshavsky, L., Gottlieb, H.E., Grossman, S. (2001). The antioxidant activity of aqueous spinach extract: chemical identification of active fractions. Phytochemistry. 58: 142–152. doi: 10.1016/S0031-9422(01)00137-6
  • Hedden, P., Sponsel, V. (2015). A century of Gibberellin Research. Journal of Plant Growth Regulation. 34: 740–760. doi: 10.1007/s00344-015-9546-1
  • Mander, L.N. (2003). Twenty years of gibberellin research. Natural Product Reports. 20: 49–69. doi: 10.1039/b007744p
  • Chandler, P.M., Robertson, M. (1999). Gibberellin dose-response curves and the characterization of dwarf mutants of barley. Plant Physiology. 120: 623–632. doi: 10.1104/pp.120.2.623
  • Bernie, G., Perilleux, C. (2005). A physiological overview of the genetics of flowering time control. Plant Biotechnology Journal. 3: 3–16. doi: 10.1111/j.1467-7652.2004.00114.x
  • Tanimoto, E. (2005). Regulation of root growth by plant hormones - roles for auxin and gibberellin. Critical Reviews in Plant Sciences. 24: 249–265. doi: 10.1080/07352680500196108
  • Hedden, P., Phillips, A.L. (2000). Gibberellin metabolism: new insights revealed by the genes. Trends in Plant Science. 5: 523–530. doi: 10.1016/S1360-1385(00)01790-8
  • Mander, L.N., Owen, D.J. (1996). Structure determination and synthesis of a new gibberellin, GA99 from spinach plants: 2b-hydroxy-GA19. Tetrahedron Letters. 37: 723–726. doi: 10.1016/0040-4039(95)02252-X
  • Owen, D.J., Mander, L.N., Storey, J.M.D., Huntley, R.P., Gaskin, P., Lenton, J. R., Gage, D.A., Zeevaart, J.A.D. (1998). Synthesis and confirmation of structure for a new gibberellin, 2b-hydroxy-GA12 (GA110), from spinach and oil palm. Phytochemistry. 47: 331–337. doi: 10.1016/S0031-9422(97)00577-3
  • Gilmour, S.J., Zeevaart, J.A.D., Schwenen, L., Graebe, J. (1986). Gibberellin Metabolism in Cell-Free Extracts from Spinach Leaves in Relation to Photoperiod. Plant Physiology. 82: 190–195. doi: 10.1104/pp.82.1.190
  • Halliday, K.J., Salter, M.G., Thingnaes, E., Whitelam, G.C. (2003). Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT. Plant Journal. 33: 875–885. doi: 10.1046/j.1365-313X.2003.01674.x
  • Trewavas, A. J. (1983). Is plant development regulated by changes in the concentration of plant growth substances? Trends in Biochemical Sciences. 8: 354–356. doi: 10.1016/0968-0004(83)90359-6
  • Jacobsen, S.E., Olszewski, N.E. (1993). Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell. 5: 887–896. doi: 10.1105/tpc.5.8.887
  • Fukuda, N., Yoshida, T., Olsen, J.E., Senaha, C., Jikumaru, Y., Kamiya, Y. (2012). Short main shoot length and inhibition of floral bud development under red light can be recovered by application of gibberellin and cytokinin. Acta Horticulturae. 956: 215–222. doi: 10.17660/ActaHortic.2012.956.23
  • Fukuda, N., Ajima, C., Yukawa, T., Olsend, J.E. (2016). Antagonistic action of blue and red light on shoot elongation in petunia depends on gibberellin, but the effects on flowering are not generally linked to gibberellin. Environmental and Experimental Botany. 121: 102–111. doi: 10.1016/j.envexpbot.2015.06.014
  • Seidlova, E., Lozhnikova, V.N., Negretsky, V.A., Chailakhyan, M.K.H. (1990). The growth of the shoot apex of Chenopodium rubrum L. treated with a florigenic extract from flowering tobacco plants: preliminary anatomical observations. Journal of Experimental Botany. 41: 1347–1349. doi: 10.1093/jxb/41.10.1347
  • Metzger, J.D. (1995). Hormones and reproductive development. In P.J. Davies (Ed.), Plant Hormones: Physiology, Biochemistry and Molecular Biology, ed. P. J. Davies, 617–648, Kluwer Academic Publishers, Dordrecht, the Netherlands.
  • Mutasa-Göttgens, E., Hedden, P. (2009). Gibberellin as a factor in floral regulatory networks. Journal of Experimental Botany. 60: 1979–1989. doi: 10.1093/jxb/erp040
  • Chen, W.S., Liu, H.Y., Liu, Z.H., Yang, L., Chen, W.H. (1994). Gibberellin and temperature influence carbohydrate content and flowering in Phalaenopsis. Physiologia Plantarum. 90: 391–395. doi: 10.1111/j.1399-3054.1994.tb00404.x
  • Chen, W.S., Chang, H.W., Chen, W.H., Lin, Y.S. (1997). Gibberellic acid and cytokinin affect Phalaenopsis flower morphology at high temperature. HortScience. 32: 1069–1073.
  • Smith, H. (2000). Phytochrome and light signal perception by plants: an emerging synthesis. Nature. 407: 585–590. doi: 10.1038/35036500
  • Cerdan, P., Chory, J. (2003). Regulation of flowering time by light quality. Nature. 423: 881–885. doi: 10.1038/nature01636
  • Chen, W.S., Chang, H.W., Chen, W.H., Lin, Y.S. (1997). Gibberellic acid and cytokinin affect Phalaenopsis flower morphology at high temperature. HortScience. 32: 1069–1073.
  • Suge, H., Rappaport, L. (1968). Role of gibberellins in stem elongation and flowering in radish. Plant Physiology. 43: 1208–1214. doi: 10.1104/pp.43.8.1208
  • Cleland, C.F., Briggs, W.R. (1969). The influence of gibberellic acid on flowering and growth in the long-day plant Lemna gibba G3. Plant Physiology. 44: 503–507. doi: 10.1104/pp.44.4.503
  • Jacques, M. (1970). Action du CCC sur le comportement des Blitum: modalities nouveiles d’elongation et de floraison. Comptes rendus de l’Académie des Sciences Paris, 270: 346–349.
  • Zeevaart, J.A.D. (1971). Effects of photoperiod on growth and endogenous gibberellins in the long day rosette plant spinach. Plant Physiology. 47: 821–827. doi: 10.1104/pp.47.6.821
  • Wareing, P.F., El-antably, H.M.M. (1970). The possible role of endogenous growth inhibitors in the control of flowering. In G. Bernier (Ed.), Cellular and Molecular Aspects of Floral Induction, ed. G. Bernier, 285–303. Longman Group, Ltd., London.
  • King, R.W., Moritz, T.L.T, Junttila, O., Herlt, A.J. (2001). Long-day induction of flowering in Lolium temulentum involves sequential increases in specific gibberellins at the shoot apex. Plant Physiology. 127: 624–632. doi: 10.1104/pp.010378
  • Menzel, C.M. (1983). Tuberization in potato at high temperatures: gibberellin content and transport from buds. Annals of Botany. 52: 697–702. doi: 10.1093/oxfordjournals.aob.a086627
  • Cleland, C.F., Zeevaart, J.A.D. (1970). Gibberellins in Relation to Flowering and Stem Elonga- tion in the Long Day Plant Silene armeria. Plant Physiology. 46: 392–400. doi: 10.1104/pp.46.3.392
  • Zeevaart, J.A.D., Gage, D.A., Talon, M. (1993). Gibberellin A is required for stem elongation in spinach. Proceedings of the National Academy of Sciences of the U.S.A., 90: 7401–7405. doi: 10.1073/pnas.90.15.7401
  • Yamaguchi, S. (2008). Gibberellin metabolism and its regulation. Annual Review of Plant Biology. 59: 225–255. doi: 10.1146/annurev.arplant.59.032607.092804
  • Knott, J.E. (1934). Effect of a localized photoperiod on spinach. Proceedings of the Society for Horticultural Science. 31: 152–154.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.