60
Views
1
CrossRef citations to date
0
Altmetric
Articles

Production, Characterization of Indole Acetic Acid and its Bioactive Potential from Endophytic Fungi of Cymbidium aloifolium L.

, , &
Pages 387-409 | Received 29 Jul 2019, Accepted 01 Nov 2019, Published online: 23 Dec 2019

References

  • Smith, S.E. and Read, D.J. (1997). Mycorrhizal symbiosis, second edition. Academic, San Diego, California. 348-379.
  • Heijden, M.G., Martin, F.M., Selosse, M.A. and Sanders, I.R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist. 205(4): 1406-1423.
  • da Silva, J.A.T., Tsavkelova, E.A., Zeng, S., Ng, T.B., Parthibhan, S., Dobanszki, J., Cardoso, J.C. and Rao, M.V. (2015). Symbiotic in vitro seed propagation of Dendrobium: fungal and bacterial partners and their influence on plant growth and development. Planta. 242(1): 1-22.
  • Chutima, R. and Lumyong, S. (2012). Production of indole-3-acetic acid by Thai native orchid-associated fungi. Symbiosis. 56(1): 35-44.
  • Nongdam, P. and Chongtham, N. (2011). In vitro rapid propagation of Cymbidium aloifolium (L.) Sw.: a medicinally important orchid via seed culture. Journal of Biological Sciences. 11(3): 254-260.
  • Xavier, T.F., Kannan, M. and Auxilia, A. (2015). Traditional medicinal plants used in the treatment of different skin diseases. International Journal of Current Microbiology and Applied Sciences. 4(5): 1043-1053.
  • Glick, B.R., Penrose, D.M. and Li, J. (1998). A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. Journal of Theoretical Biology. 190(1): 63-68.
  • Khan, A.L., Asaf, S., Khan, A.R., Al-Harrasi, A., Al-Rawahi, A. and Lee, I.J. (2016). First draft genome sequencing of indole acetic acid producing and plant growth promoting fungus Preussia sp. BSL10. Journal of Biotechnology. 225: 44-45.
  • Khan, A.L., Gilani, S.A., Waqas, M., Al-Hosni, K., Al-Khiziri, S., Kim, Y.H., Ali, L., Kang, S.M., Asaf, S., Shahzad, R. and Hussain, J. (2017). Endophytes from medicinal plants and their potential for producing indole acetic acid, improving seed germination and mitigating oxidative stress. Journal of Zhejiang University-Science B. 18(2): 125-137.
  • Zhang, W., Sun, K., Shi, R.H., Yuan, J., Wang, X.J. and Dai, C.C. (2018). Auxin signalling of Arachis hypogaea activated by colonization of mutualistic fungus Phomopsis liquidambari enhances nodulation and N2 fixation. Plant, Cell and Environment. 41(9): 2093-2108.
  • Zhao, Y. (2010). Auxin biosynthesis and its role in plant development. Annual Review of Plant Biology. 61: 49.
  • Fu, S.F., Wei, J.Y., Chen, H.W., Liu, Y.Y., Lu, H.Y. and Chou, J.Y. (2015). Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms. Plant Signal Behaviour. 10(8): pe1048052.
  • Spaepen, S., Vanderleyden, J. and Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews. 31(4): 425-448.
  • Hermosa, R., Viterbo, A., Chet, I. and Monte, E. (2012). Plant-beneficial effects of Tricho-derma and of its genes. Microbiology. 158(1): 17-25.
  • Pant, B., Shah, S., Shrestha, R., Pandey, S. and Joshi, P.R. (2017). An Overview on Orchid Endophytes. In Mycorrhiza-Nutrient Uptake, Biocontrol, Ecorestoration. Springer, Cham. 503-524.
  • Zhu, G.S., Yu, Z.N., Gui, Y. and Liu, Z.Y. (2008). A novel technique for isolating orchid mycorrhizal fungi. Fungal Diversity. 33: 123-137.
  • Ellis, M.B. (1971). Dematiaceous Hyphomycetes CAB Commonwealth Mycological Institute.
  • Sutton, B.C. (1980). The coelomycetes. CMI. Kew, Surrey, England.
  • Barnett, H.L. and Barry, B. (1998). Illustrated genera of imperfect fungi. The American Phytopathological Society.
  • Sarwar, M. and Kremer, R.J. (1995). Determination of bacterially derived auxins using a microplate method. Lett Appl Microbiol. 20(5): 282-285.
  • Tsavkelova, E.A., Cherdyntseva, T.A., Botina, S.G. and Netrusov, A.I. (2007). Bacteria associated with orchid roots and microbial production of auxin. Microbiological Research. 162(1): 69-76.
  • Chutima, R., Dell, B., Vessabutr, S., Bussaban, B. and Lumyong, S. (2011). Endophytic fungi from Pecteilis susannae (L.) Rafin (Orchidaceae), a threatened terrestrial orchid in Thailand. Mycorrhiza. 21(3): 221-229.
  • Ahmad, F., Ahmad, I. and Khan, M.S. (2005). Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turkish Journal of Biology. 29(1): pp.29-34.
  • Kaneshiro, T., Slodki, M.E. and Plattner, R.D. (1983). Tryptophan catabolism to indole pyruvic and indole acetic acids by Rhizobium japonicum L-259 mutants. Current Microbiology. 8(5): 301-306.
  • Tsavkelova, E., Oeser, B., Oren-Young, L., Israeli, M., Sasson, Y., Tudzynski, B. and Sharon, A. (2012). Identification and functional characterization of indole-3-acetamide-mediated IAA biosynthesis in plant-associated Fusarium species. Fungal Genetics and Biology. 49(1): 48-57.
  • Jeyanthi, V. and Ganesh, P. (2013). Production, optimization and characterization of phyto-hormones indole acetic acid by Pseudomonas fluorescence. International Journal of Pharmaceutical and Biological Archive. 4(2): 514-520.
  • Tuominen, H., Ostin, A., Sandberg, G. and Sundberg, B. (1994). A novel metabolic pathway for indole-3-acetic acid in apical shoots of Populus tremula (L.) x Populus tremuloides (Michx.). Plant Physiology. 106(4): 1511-1520.
  • Omer, Z.S., Tombolini, R., Broberg, A. and Gerhardson, B. (2004). Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria. Plant Growth Regulation. 43(1): 93-96.
  • De Tempe J. (1953). The blotter method of seed health testing. International Seed Testing Association. 28: 133-157.
  • Abdul-Baki, A.A. and Anderson, J.D. (1973). Vigor determination in soybean seed by multiple criteria. Crop Science. 13(6): 630-633.
  • Anjum, S., Zia, M. and Chaudhary, F. (2006). Investigations of different strategies for high frequency regeneration of Dendrobium malones ‘Victory’. African Journal of Biotechnology. 5(19): 1738-1743.
  • Deb, C.R. (2006). Effect of different factors on non-symbiotic seed germination, formation of protocorm-like bodies and plantlet morphology of Cleisostoma racemiferum (Lindl.) Garay. Indian Journal of Biotechnology. 5: 223-228.
  • Ng, C.Y. and Saleh, N.M. (2011). In vitro propagation of Paphiopedilum orchid through formation of protocorm-like bodies. Plant Cell, Tissue and Organ Culture, 105(2): 193-202.
  • Deepti, S., Gayatri, M.C. and Sitikantha, S. (2013). In vitro seed germination as an aid to conserve Aerides maculosum L., an endemic and endangered orchid of Western Ghats, India. International Journal of Pharmacy and Biological Sciences. 4(2): (B) 478-486.
  • Yuan, Z.L., Chen, Y.C. and Yang, Y. (2009). Diverse non-mycorrhizal fungal endophytes inhabiting an epiphytic, medicinal orchid (Dendrobium nobile): estimation and characterization. World Journal of Microbiology and Biotechnology. 25(2): 295-303.
  • Munasinghe, M.V.K., Kumar, N.S., Jayasinghe, L. and Fujimoto, Y. (2017). Indole-3-Acetic Acid Production by Colletotrichum siamense, An Endophytic Fungus from Piper nigrum Leaves. Journal of Biologically Active Products from Nature. 7(6): 475-479.
  • Yang, S., Zhang, X., Cao, Z., Zhao, K., Wang, S., Chen, M. and Hu, X. (2014). Growth promoting Sphingomonas paucimobilis ZJSH1 associated with Dendrobium officinale through phytohormone production and nitrogen fixation. Microbial Biotechnology. 7(6): 611-620.
  • Khan, A.R., Ullah, I., Waqas, M., Shahzad, R., Hong, S.J., Park, G.S., Jung, B.K., Lee, I.J. and Shin, J.H. (2015). Plant growth-promoting potential of endophytic fungi isolated from Solanum nigrum leaves. World Journal of Microbiology and Biotechnology. 31(9): 1461-1466.
  • Deepthi, A.S. and Ray, J.G. (2018). Endophytic diversity of hanging velamen roots in the epiphytic orchid Acampe praemorsa. Plant Ecology & Diversity: 11(5-6): 649-661.
  • Parthibhan, S., Rao, M.V. and Kumar, T.S. (2017). Culturable fungal endophytes in shoots of Dendrobium aqueum Lindley-an imperiled orchid. Ecological Genetics and Genomics. 3: 18-24.
  • Varalakshmi, P. and Malliga, P. (2012). Evidence for production of Indole-3-acetic acid from a fresh water cyanobacteria (Oscillatoria annae) on the growth of H. annus. International Journal of Scientific and Research Publication. 2: 1-15.
  • Bialek, K. and Cohen, J.D. (1986). Isolation and partial characterization of the major amide-linked conjugate of indole-3-acetic acid from Phaseolus vulgaris L. Plant Physiology. 80(1): 99-104.
  • Prinsen, E., Costacurta, A., Michiels, K., Vanderleyden, J. and Van Onckelen, H. (1993). Azospirillum brasilense indole-3-acetic acid biosynthesis: evidence for a non-tryptophan dependent pathway. Molecular Plant-Microbe Interactions. 6: 609-609.
  • Kumla, J., Suwannarach, N., Bussaban, B., Matsui, K. and Lumyong, S. (2014). Indole-3-acetic acid production, solubilization of insoluble metal minerals and metal tolerance of some sclerodermatoid fungi collected from northern Thailand. Annals of Microbiology. 64(2).
  • Bilkay, I.S., karakoc, S. and Aksoz, N. (2010). Indole-3-acetic acid and gibberellic acid production in Aspergillus niger. Turkish Journal of Biology. 34(3): 313-318.
  • Yurekli, F., Geckil, H. and Topcuoglu, F. (2003). The synthesis of indole-3-acetic acid by the industrially important white-rot fungus Lentinus sajorcaju under different culture conditions. Mycological Research. 107(03): 305-309.
  • Bar, T. and Okon, Y. (1993). Tryptophan conversion to indole-3-acetic acid via indole-3-acetamide in Azospirillum brasilense Sp7. Canadian Journal of Microbiology. 39(1): 81-86.
  • Fehraeus, G. and Tullander, V. (1956). Effect of Indole 3 Acetic Acid on the Formation of Oxidases in Fungi. Physiologia Plantarum. 9(3): 494-501.
  • Robinson, M., Riov, J. and Sharon, A. (1998). Indole-3-Acetic Acid Biosynthesis in Colletotrichum gloeosporioides f. sp. aeschynomene. Applied and Environmental Microbiology. 164(12): 5030-5032.
  • Scarcella, A.S.D.A., Bizarria Junior, R., Bastos, R.G. and Magri, M.M.R. (2017). Temperature, pH and carbon source affect drastically indole acetic acid production of plant growth promoting yeasts. Brazilian Journal of Chemical Engineering. 34(2): 429-438.
  • Kalimuthu, K., Senthilkumar, R. and Vijayakumar, S. (2007). In vitro micropropagation of orchid, Oncidium sp. (Dancing Dolls). African Journal of Biotechnology. 6(10): 1171-1174.
  • Arditti J. (1979). Aspects of the Physiology of Orchids. Adv. Bot. Res. 7: 422-638.
  • Al-Hosni, K., Shahzad, R., Latif Khan, A., Muhammad Imran, Q., Al Harrasi, A., Al Rawahi, A., Asaf, S., Kang, S.M., Yun, B.W. and Lee, I.J. (2018). Preussia sp. BSL-10 producing nitric oxide, gibberellins, and indole acetic acid and improving rice plant growth. Journal of Plant Interactions. 13(1): 112-118.
  • Ng, C.Y. and Saleh, N.M. (2011). In vitro propagation of Paphiopedilum orchid through formation of protocorm-like bodies. Plant Cell, Tissue and Organ Culture. 105(2): pp.193-202.
  • Deb, C.R. and Temjensangba, S. (2006). In vitro propagation of threatened terrestrial orchid, Malaxis khasiana Soland ex. Swartz through immature seed culture. Indian Journal of Experimental Biology. 44(9): 762.
  • Sagaya Sr, M.B. and Divakar, K.M. (2015). In vitro seed germination studies and flowering in micropropagated plantlets of Dendrobium ovatum Lindl. IOSR Journal of Biotechnology and Biochemistry (IOSR-JBB). 1(3): 04-09.
  • Nongdam, P. and Tikendra, L. (2014). Establishment of an efficient in vitro regeneration protocol for rapid and mass propagation of Dendrobium chrysotoxum Lindl. using seed culture. The Scientific World Journal. Article ID 740150, 8 pages.
  • Dohling, S., Kumaria, S. and Tandon, P. (2010). Optimization of nutrient requirements for asymbiotic seed germination of Dendrobium longicornu Lindl. and D. formosum Roxb. Proceedings of the Indian National Science Academy. 74(4): 167-171
  • Kumar, N.V., Rajam, K.S. and Rani, M.E. (2017). Plant Growth Promotion Efficacy of Indole Acetic Acid (IAA) Produced by a Mangrove Associated Fungi-Trichoderma viride VKF3. Int. J. Curr. Microbiol. App. Sci. 6(11): 2692-2701.
  • Numponsak, T., Kumla, J., Suwannarach, N., Matsui, K. and Lumyong, S. (2018). Biosynthetic pathway and optimal conditions for the production of indole-3-acetic acid by an endophytic fungus, Colletotrichum fructicola CMU-A109. PloS one, 13(10): e0205070.
  • Scarpella, E., Barkoulas, M. and Tsiantis, M. (2010). Control of leaf and vein development by auxin. Cold Spring Harbor Perspectives in Biology. 2(1): a001511

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.