48
Views
2
CrossRef citations to date
0
Altmetric
Articles

In Silico Pharmacokinetics and Molecular Docking of Novel Bioactive Compound (11-Methoxy-2-Methyltridecane-4-Ol) for Inhibiting Carbohydrates Hydrolyzing Enzyme

ORCID Icon, , , &
Pages 445-456 | Received 15 Sep 2019, Accepted 07 Jan 2020, Published online: 02 Feb 2020

Reference

  • Zheng, M., Zhao, J., Cui, C., Fu, Z., Li, X., Liu, X. and Chen, K. (2018). Computational chemical biology and drug design: Facilitating protein structure, function, and modulation studies. Medicinal Research Reviews. 38(3): 914-950. doi: 10.1002/med.21483
  • Naqvi, A.A., Mohammad, T., Hasan, G.M. and Hassan, M. (2018). Advancements in Docking and Molecular Dynamics Simulations Towards Ligand-receptor Interactions and Structure-function Relationships. Current Topics in Medicinal Chemistry. 18(20): 1755-1768. doi: 10.2174/1568026618666181025114157
  • Amuthalakshmi, S. and Anton Smith, A. (2013). In silico design of a ligand for DPP IV in type II diabetes. Advances in Biological Research. 7(6): 248-252.
  • Sarvagalla, S., Syed, S.B. and Coumar, M.S. (2019). An Overview of Computational Methods, Tools, Servers, and Databases for Drug Repurposing. In In Silico Drug Design (pp. 743-780 ). doi: 10.1016/B978-0-12-816125-8.00025-0
  • Zimmet, P.Z. (1999). Diabetes epidemiology as a tool to trigger diabetes research and care. Diabetologia. 42(5): 499-518. doi: 10.1007/s001250051188
  • Bharathi, A., Roopan, S.M., Vasavi, C.S., Munusami, P., Gayathri, G.A. and Gayathri, M. (2014). In silico molecular docking and in vitro antidiabetic studies of dihydropyrimido [4, 5-a] acridin-2-amines. BioMed research international. 1-10.
  • Zheng, Y., Ley, S.H. and Hu, F.B. (2018). Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews Endocrinology. 14(2): 88. doi: 10.1038/nrendo.2017.151
  • Rehman, K., Chohan, T.A., Waheed, I., Gilani, Z. and Akash, M.S.H. (2019). Taxifolin prevents postprandial hyperglycemia by regulating the activity of α-amylase: Evidence from an in vivo and in silico studies. Journal of Cellular Biochemistry. 120(1): 425-438. doi: 10.1002/jcb.27398
  • Raghu, C., Arjun, H.A. and Anantharaman, P. (2019). In vitro and In silico inhibition properties of fucoidan against α-amylase and α-D-glucosidase with relevance to type 2 diabetes mellitus. Carbohydrate Polymers. 209: 350-355. doi: 10.1016/j.carbpol.2019.01.039
  • Goedeke, L., Perry, R.J. and Shulman, G.I. (2019). Emerging pharmacological targets for the treatment of nonalcoholic fatty liver disease, insulin resistance, and type 2 diabetes. Annual Review of Pharmacology and Toxicology. 59: 65-87. doi: 10.1146/annurev-pharmtox-010716-104727
  • Zhao, C., Yang, C., Liu, B., Lin, L., Sarker, S.D., Naharand Xiao, J. (2018). Bioactive compounds from marine macroalgae and their hypoglycemic benefits. Trends in Food Science & Technology. 72: 1-12. doi: 10.1016/j.tifs.2017.12.001
  • Volpe, C.M.O., Villar-Delfino, P.H., dos Anjos, P.M.F. and Nogueira-Machado, J.A. (2018). Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell death & disease. 9(2): 119. doi: 10.1038/s41419-017-0135-z
  • Garber, A.J., Abrahamson, M.J., Barzilay, J.I., Blonde, L., Bloomgarden, Z.T., Bush, M.A. and Garber, J.R. (2018). Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm-2018 executive summary. Endocrine Practice. 24(1): 91-120. doi: 10.4158/CS-2017-0153
  • Abbott Isabella, N. and James N. (1985). Taxonomy of economic seaweeds: with reference to some Pacific and Caribbean species, Scripps Institution of Oceanography Technical Report. pp. 1-182.
  • Lewellyn, K. and Zjawiony, J.K. (2018). Aplysinopsins as Promising Marine Natural Product Drug Leads: Recent Developments. In Grand Challenges in Marine Biotechnology (pp. 191–215 ). doi: 10.1007/978-3-319-69075-9_5
  • Zhao, C., Yang, C., Liu, B., Lin, L., Sarker, S.D., Nahar, L. AND Xiao, J. (2018). Bioactive compounds from marine macroalgae and their hypoglycemic benefits. Trends in Food Science & Technology. 72: 1-12. doi: 10.1016/j.tifs.2017.12.001
  • Abbas, M., Saeed, F. and Suleria, H.A.R. (2018). Marine Bioactive Compounds: Innovative Trends in Food and Medicine. Plant-and Marine-Based Phytochemicals for Human Health: Attributes, Potential, and Use, 61.
  • Øverland, M., Mydland, L.T. and Skrede, A. (2019). Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. Journal of the Science of Food and Agriculture. 99(1): 13-24. doi: 10.1002/jsfa.9143
  • Mahapatra, G.P., Raman, S., Nayak, S., Gouda, S., Das, G. and Patra, J.K. (2019). Metagenomics Approaches in Discovery and Development of New Bioactive Compounds from Marine Actinomycetes. Current Microbiology. 1-12.
  • Odeleye, T., White, W.L. and Lu, J. (2019). Extraction techniques and potential health benefits of bioactive compounds from marine molluscs: A review. Food & Function. 10(5): 2278-2289. doi: 10.1039/C9FO00172G
  • Lorenzo, J.M., Munekata, P.E., Gomez, B., Barba, F.J., Mora, L., Perez-Santaescolastica, C. and Toldra, F. (2018). Bioactive peptides as natural antioxidants in food products-A review. Trends in Food Science & Technology. 79: 136-147. doi: 10.1016/j.tifs.2018.07.003
  • Yu, Y., Shen, M., Song, Q. and Xie, J. (2018). Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydrate. 183: 91-101. doi: 10.1016/j.carbpol.2017.12.009
  • Levi, L. and Mueller, T.J. (2016). Multicomponent syntheses of functional chromophores. Chemical Society Reviews. 45(10); 2825-2846. doi: 10.1039/C5CS00805K
  • Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. and Lightfoot, D. (2017). Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants. 6(4): 42. doi: 10.3390/plants6040042
  • Vijayalakshmi, R.A. and Ravindhran, R. (2012). Comparative fingerprint and extraction yield of Diospyrus ferrea (willd.) Bakh. root with phenol compounds (gallic acid), as determined by UV-Vis and FT-IR spectroscopy. Asian Pacific Journal of Tropical Biomedicine. 2(3): S1367–S1371. doi: 10.1016/S2221-1691(12)60418-3
  • Basu, S. and Sinhababu, A. (2015). Determination of n-alkanes in the cuticular wax of leaves of Lagerstroemia speciosa Pers. Research on Chemical Intermediates. 41(4): 1967-1973. doi: 10.1007/s11164-013-1324-8
  • Li, C., Zhang, J., Yi, Z., Yang, H., Zhao, B., Zhang, W. and Li, J. (2016). Preparation and characterization of a novel environmentally friendly phenol-formaldehyde adhesive modified with tannin and urea. International Journal of Adhesion and Adhesives. 66: 26-32. doi: 10.1016/j.ijadhadh.2015.12.004
  • Xu, C., Wang, Y., Chen, J., Zhou, Q., Wang, P., Yang, Y. and Sun, S. (2013). Infrared macro-fingerprint analysis-through-separation for holographic chemical characterization of herbal medicine. Journal of Pharmaceutical and Biomedical Analysis. 74: 298-307. doi: 10.1016/j.jpba.2012.10.007
  • Sutour, S., Xu, T., Casabianca, H., Paoli, M., De Rocca-Serra, D., Tomi, F., Garrido, M., Pasqualini, M., Aiello, A. and Castola, V. (2015). Chemical composition of extracts from Chaetomorpha linum (Miller) Kütz. A potential use in the cosmetic industry. Int. J. Phytocosmet. Nat. Ingred., 2–5.
  • Costa, M.S., Rego, A., Ramos, V., Afonso, T.B., Freitas, S., Preto, M., Lopes, V., Vasconcelos, V., Magalhães, C. and Leão, P.N. (2016). The conifer biomarkers dehydroabietic and abietic acids are widespread in Cyanobacteria. Sci. Rep. 6: 23436. doi: 10.1038/srep23436
  • Ramnath, M.G., Thirugnanasampandan, R., Sadasivam, M. and Mohan, P.S. (2015). Antioxidant, antibacterial and antiacetylcholinesterase activities of abietic acid from Isodon wightii (Bentham) H. Hara. Free Rad. Antiox. 5: 1-5. doi: 10.5530/fra.2015.1.1
  • Stabili, L., Acquaviva, M.I., Biandolino, F., Cavallo, R.A., De Pascali, S.A., Fanizzi, F.P., Narracci, M., Petrocelli, A. and Cecere, E (2012). The lipidic extract of the seaweed Gracilariopsis longissima (Rhodophyta, Gracilariales): A potential resource for biotechnological purposes? New Biotechnol. 29: 443-450. doi: 10.1016/j.nbt.2011.11.003
  • Sobolev, A.P., Brosio, E., Gianferri, R. and Segre, A.L. (2005). Metabolic profile of lettuce leaves by high-field NMR spectra. Magn. Reson. Chem. 43: 625-638. doi: 10.1002/mrc.1618
  • Siuzdak, G. (1996). Mass spectrometry for biotechnology. Elsevier.
  • Duarte, Y., Márquez Miranda, V., Miossec, M.J. and González Nilo, F. (2019). Integration of target discovery, drug discovery and drug delivery: A review on computational strategies. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, e1554.
  • Cronin, M.T. and Yoon, M. (2019). Computational methods to predict toxicity. In The History of Alternative Test Methods in Toxicology (pp. 287-300). Academic Press.
  • Delavan, B., Roberts, R., Huang, R., Bao, W., Tong, W. and Liu, Z. (2018). Computational drug repositioning for rare diseases in the era of precision medicine. Drug Discovery Today. 23(2): 382-394. doi: 10.1016/j.drudis.2017.10.009
  • Gong, P., Thangapandian, S., Li, Y., Idakwo, G., Luttrell IV, J., Chen, M. AND Zhang, C. (2019). Mode-of-action-guided, molecular modeling-based toxicity prediction: A novel approach for in silico predictive toxicology. In Advances in Computational Toxicology (pp. 99-118 ). doi: 10.1007/978-3-030-16443-0_6
  • Sledz, P., and Caflisch, A. (2018). Protein structure-based drug design: from docking to molecular dynamics. Current Opinion in Structural Biology. 48: 93-102. doi: 10.1016/j.sbi.2017.10.010
  • Iglesias, J., Saen oon, S., Soliva, R. and Guallar, V. (2018). Computational structure based drug design: Predicting target flexibility. Wiley Interdisciplinary Reviews: Computational Molecular Science. 8(5): e1367.
  • Li, Y. (2008). In vivo pharmacokinetics of hesperidin are affected by treatment with glucosidase-like BglA protein isolated from yeasts. J. Agric. Food Chem. 56(14): 5550-5557. doi: 10.1021/jf800105c
  • Bao, H. and Chen, L. (2011). Icariin reduces mitochondrial oxidative stress injury in diabetic rat hearts. Chin. Mater. Med. 36(11): 1503-1507.
  • Akiyama, S., Katsumata, S., Suzuki, K., Ishimi, Y., Wu, J. and Uehara, M. (2010). Dietary hesperidin exerts hypoglycemic and hypolipidemic effects in streptozotocin-induced marginal Type 1 diabetic rats. J. Clin. Biochem. Nutr. 46(1): 87-92. doi: 10.3164/jcbn.09-82

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.