24
Views
2
CrossRef citations to date
0
Altmetric
Articles

Standardized Extract from Enicostemma littorale Ameliorates Post-prandial Hyperglycaemia in Normal and Diabetic Rats

, , &
Pages 34-43 | Received 17 Sep 2019, Accepted 29 Jan 2020, Published online: 03 Apr 2020

References

  • Rios, J.L., Francini, F., Schinella, G.R. (2015). Natural products for the treatment of type 2 diabetes mellitus, Planta Med. 81: 975–994.
  • Lin, P.J., Kent, D.M., Winn, A., Cohen, J.T., Neumann, P.J. (2015). Multiple chronic conditions in type 2 diabetes mellitus: prevalence and consequences. Am. J. Managed Care 21(1): 23-34.
  • International Diabetes Federation, https://www.idf.org/our-networks/regions-members/south-east-asia/members/94-india.html (Accessed June 29, 2019).
  • Bjorntorp, P. (1990). Portal adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis. 10: 493–96.
  • Gin, H., and Rigalleau, V. (2000). Post-prandial hyperglycemia and diabetes. Diab. Metab. 26: 265–72.
  • Scheen, A.J. (2003). Is there a role for α-glucosidase inhibitors in the prevention of type 2 diabetes mellitus?, Drugs. 63: 933–951.
  • Alkefai, N.H., Ahamad, J., Amin, S., Mir, S.R. (2018). Arylated gymnemic acids from Gymnema sylvestre R.Br. as potential α -glucosidase inhibitors. Phytochem. Lett. 25: 196–202.
  • Subramanian, R., Asmawi, M.Z., Sadikun, A. (2008). In-vitro α-glucosidase and α-amylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide. Acta Biochim. Polon. 55(2): 391–398.
  • Alkefai, N.H., Sharma, M., Ahamad, J., Amin, S., Mir, S.R. (2019). New olean-15-ene type gymnemic acids from Gymnema sylvestre (Retz.) R.Br. and their antihyperglycemic activity through α-glucosidase inhibition. Phytochem. Lett. 32: 83–89.
  • Fabricant, D.S., and Farnsworth, N.R. (2001). The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect. 109(1): 69–75.
  • Ahamad, J., Naquvi, K.J., Mir, S.R., Ali, M. (2011). Review on role of natural alpha-glucosidase inhibitors for management of diabetes mellitus. Inter. J. Biomed. Res. 6: 374–80.
  • Nadkarni, K.M. (2007). Indian Materia Medica, Popular Prakashan, Bombay, 1: p. 485.
  • Maroo, J., Vasu, V.T., Gupta, S. (2003). Dose dependent hypoglycemic effect of aqueous extract of Enicostemma littorale Blume in alloxan induced diabetic rats. Phytomed. 10(2-3): 196–99.
  • Upadhyay, U.M., and Goyal, R.K. (2004). Efficacy of Enicostemma littorale in type 2 diabetic patients. Phytother. Res. 18: 233–35.
  • Vasu, V.T., Ashwini, K.C., Maroo, J., Gupta, S., Gupta, S. (2003). Antidiabetic effect of Enicostemma littorale Blume aqueous extract in newly diagnosed non-insulin dependent diabetes mellitus patients (NIDDM): a preliminary investigation. Orient. Pharm. Exp. Med. 3: 84–89.
  • Murali, B., Upadhyaya, U.M., Goyal, R.K. (2003). Effect of chronic treatment with Enicostemma littorale in non-insulin-dependent diabetic (NIDDM) rats. J. Ethanopharmacol. 85(2–3): 299.
  • Vasu, V.T., Modi, H., Thaikoottathil, J.V., Gupta, S. (2005). Hypolipidaemic and antioxidant effect of Enicostemma littorale Blume aqueous extract in cholesterol fed rats. J. Ethnopharmacol. 101: 277–82.
  • Maroo, J., Vasu, V.T., Aalinkeel, R., Gupta, S. (2002). Glucose lowering effect of Enicostemma littorale Blume in diabetes: a possible mechanism of action. J. Ethanopharmacol. 81(3): 317–20.
  • Sonawane, R.D., Vishwakarma, S.L., Lakshmi, S., Rajani, M., Padh, H., Goyal, R.K. (2010). Amelioration of STZ-induced type 1 diabetic nephropathy by aqueous extract of Enicostemma littorale Blume and swertiamarin in rats. Mol. Cell Biochem. 340: 1–6.
  • Sadique, J., Chandra, T., Thenmozhi, V., Elango, V. (1987). The anti-inflammatory effects of Enicostemma littorale and Mollugo cerviana. Biochem. Med. Metabol. Biol. 37: 167–76.
  • Kavimani, S., and Manisenthlkumar, K.T. (2000). Effects of methanolic extract of Enicostemma littorale on Dalton’s ascetic lymphoma. J. Ethnopharmacol. 71: 349–52.
  • Bhatt, N.M., Chavda, M., Desai, D., Zalawadia, R., Patel, V.B., Burade, V., et al., (2012). Cardioprotective and antihypertensive effects of Enicostemma littorale Blume extract in fructose-fed rats. Can. J. Physiol. Pharmacol. 90(8): 1065–73.
  • Jaishree, V., and Badami, S. (2009). Antiedematogenic and free radical scavenging activity of swertiamarin isolated from Enicostemma axillare. Planta Med. 75: 12–17.
  • Gopal. R., Gnanamani, A., Udayakumar, R., Sadulla, S. (2004). Enicostemma littorale Blume: a potential hypolipidemic plant. Nat. Prod. Rad. 3: 401–05.
  • Ahamad, J., Amin, S., Mir, S.R. (2016). Response surface methodology for optimization of ultrasound assisted extraction of swertiamarin from Enicostema littorale Blume. Curr. Bio. Comp. 12: 87–92.
  • Ahamad, J., Amin, S., Hassan, N., Mir, S.R. (2015). Development and validation of HPTLC-densitometry method for the quantification of swertiamarin in traditional bitters and formulations. J. Planar Chromatogr. 28(1): 61–68.
  • Ahamad, J., Amin, S., Mir, S.R. (2014). Development and validation of HPLC-UV method for estimation of swertiamarin in Enicostemma littorale. J. Pharm. BioSci. 1: 9–16.
  • Ahamad, J., Mir, S.R., Amin, S. (2019). Antihyperglycemic activity of charantin isolated from fruits of Momordica charantia Linn. Int. Res. J. Pharm. 10(1):61–64.
  • Ahamad, J., Hassan, N., Amin, S., Mir, S.R. (2016). Swertiamarin contributes to glucose homeostasis via inhibition of carbohydrate metabolizing enzymes. J. Nat. Rem. 16(4): 125–30.
  • Purves, R.D. (1992). Optimum numerical integration methods for estimation of area-under-the-curve (AUC) and area-under-the moment-curve (AUMC). J. Pharmacokinet. Biopharm. 20: 211–227.
  • Vaidya, H., Rajani, M., Sudarsanam, V., Padh, H., Goyal, R. (2009). Antihyperlipidaemic activity of swertiamarin, asecoiridoid glycoside in poloxamer-407-induced hyperlipidaemic rats. J. Natural Med. 63: 437–42.
  • Vaidya, H., Rajani, M., Sudarsanam, V., Padh, H., Goyal, R. (2009). Swertiamarin: a lead from Enicostemma littorale Blume for anti-hyperlipidaemic eûect. Eur. J. Pharmacol. 617(1–3): 108–12.
  • Vaidya, H., Goyal, R.K., Cheema, S.K. (2012). Anti-diabetic activity of swertiamarin is due to an active metabolite, gentianine, that up regulates PPAR-g gene expression in 3T3-L1 cells. Phytother. Res. 27(4): 624–7.
  • Patel, M.B., and Mishra, S.H. (2011). Hypoglycemic activity of C-glycosyl ûavonoid from Enicostemma hyssopifolium. Pharmaceut. Biol. 49(4): 383–91.
  • Dong, H.Q., Li, M., Zhu, F., Liu, F.L., Huang, J.B. (2012). Inhibitory potential of trilobatin from Lithocarpus polystachyus Rehd against α-glucosidase and α-amylase linked to type 2 diabetes. Food Chem. 130: 261–66.
  • Hassan, N., Ahamad, J., Amin, S., Mir, S.R. (2015). Rapid preparative isolation of erythrocentaurin from Enicostemma littorale by medium pressure liquid chromatography, its estimation by a validated HPTLC densitometric method and á-amylase inhibitory activity. J. Sep. Sci. 38(4): 592–98.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.