21
Views
1
CrossRef citations to date
0
Altmetric
Articles

Methanolic Stem Extract of Colebrookea oppositifolia Attenuates Epilepsy in Experimental Animal Models: Possible Role of GABA Pathways

, , &
Pages 44-58 | Received 11 Feb 2020, Accepted 04 Mar 2020, Published online: 03 Apr 2020

Reference

  • Amudhan, S., Gururaj, G., Satishchandra, P. (2015). Epilepsy in India I: Epidemiology and public health. Ann. Ind. Acad. Neurol. 18(3): 263.
  • Tang, F., Hartz, A., Bauer, B. (2017). Drug-resistant epilepsy: multiple hypotheses, few answers. Front. Neurol. 8: 301.
  • Löscher, W., Schmidt, D. (2011). Modern antiepileptic drug development has failed to deliver: ways out of the current dilemma. Epilepsia. 52(4): 657–678.
  • Fricke-Galindo, I., Jung-Cook, H., LLerena, A., López-López, M. (2018). Pharmacogenetics of adverse reactions to antiepileptic drugs. Neurología. 33(3): 165–176.
  • Spinella, M. (2001). Herbal medicines and epilepsy: the potential for benefit and adverse effects. Epilepsy Behav. 2(6): 524–532.
  • Manchishi, S.M. (2018). Recent Advances in Antiepileptic Herbal Medicine. Cur. Neuropharma- col. 16(1): 79–83.
  • Zhu, H.L., Wan, J.B., Wang, Y.T., Li, B.C., Xiang, C., He, J., Li, P. (2014). Medicinal com- pounds with antiepileptic/anticonvulsant activities. Epilepsia. 55(1): 3–16.
  • Sucher, N.J., Carles, M.C. (2015). A pharmacological basis of herbal medicines for epilepsy. Epilepsy Behav. 52: 308–318.
  • Liu, W., Ge, T., Pan, Z., Leng, Y., Lv, J., Li, B. (2017). The effects of herbal medicine on epilepsy. Oncotarget. 8(29): 48385–48397.
  • Viswanatha, G.L., Venkataranganna, M.V., Prasad, N.B.L. (2017). Ameliorative potential of Colebrookea oppositifolia methanolic root extract against experimental models of epilepsy: Possible role of GABA mediated mechanism. Biomed. Pharmacother. 90: 455–465.
  • Ali, I., Sharma, P., Suri, K.A., Satti, N.K., Dutt, P., Afrin, F., Khan, I.A. (2011). In vitro antifungal activities of amphotericin B in combination with acteoside, a phenylethanoid glycoside from Colebrookea oppositifolia. J. Med. Microbiol. 60(9): 1326–1336.
  • Panda, S.K., Padhi, L., Leyssen, P., Liu, M., Neyts, J., Luyten, W. (2017). Antimicrobial, anthelmintic, and antiviral activity of plants traditionally used for treating infectious disease in the similipal biosphere reserve, Odisha, India. Front. Pharmacol. 8: 658.
  • Gupta, R.S., Yadav, R.K., Dixit, V.P., Dobhal, M.P. (2001). Antifertility studies of Colebrookia oppositifolia leaf extract in male rats with special reference to testicular cell population dynamics. Fitoterapia. 72(3): 236–245.
  • Riaz, T., Abbasi, M., Shahzadi, T., Rehman, A., Siddiqui, S., Ajaib, M. (2011). Colebrookia oppositifolia : A valuable source for natural antioxidants. J. Med. Plants Res. 5: 4180–4187.
  • Pallab, K., Kush, B., Kumar, P., Girraj, T., Kishor, T., Singh, N., Kumar, S., Shivani, G. (2011). In vitro-in vivo evaluation of cardioprotective effect of the leaf extract of Colebrookea oppositifolia Sm. J. Global Trend. Pharm. Sci. 2: 310–324.
  • Ghaisas, M.M., Sharma, S., Ganu, G.P., Limaye, R.P. (2010). Antiulcer Activity of Colebrookea oppositifolia Sm. Res. J. Pharmacol. Pharmacodyn. 2(1): 66–70.
  • Viswanatha, G.L., Venkataranganna, M.V., Prasad, N.B.L., Hanumanthappa, S. (2018). Chemical characterization and cerebroprotective effect of methanolic root extract of Colebrookea oppositifolia in rats. J. Ethnopharmacol. 223: 63–75.
  • Sharma, J., Gairola, S., Gaur, R.D., Painuli, R.M., Siddiqi, T.O. (2013). Ethnomedicinal plants used for treating epilepsy by indigenous communities of sub-Himalayan region of Uttarakhand, India. J. Ethnopharmacol. 150: 353–370.
  • OECD, Guideline on Acute Oral Toxicity (AOT). Environmental Health and Safety Monograph Series on Testing and Adjustment No.425, (2001) http://www.oecd.org/chemicalsafety/risk-assessment/1948378.pdf (Accessed on 26th August 2019).
  • Brown, W.C., Schiffman, D.O., Swinyard, E.A., Goodman, L.S. (1953). Comparative assay of antiepileptic drugs by” psychomotor” seizure test and minimal electroshock threshold test. J. Pharmacol. Exp. Ther. 107(3): 273–283.
  • Kaminski, R.M., Livingood, M.R., Rogawski, M.A. (2004). Allopregnanolone analogs that positively modulate GABAA receptors protect against partial seizures induced by 6 Hz electrical stimulation in mice. Epilepsia. 45(7): 864–867.
  • Florek-Luszczki, M., Wlaz, A., Zagaja, M., Andres-Mach, M., Kondrat-Wrobel, M.W., Luszczki, J.J. (2015). Effects of WIN 55,212-2 (a synthetic cannabinoid CB1 and CB2 receptor agonist) on the anticonvulsant activity of various novel antiepileptic drugs against 6 Hz-induced psychomotor seizures in mice. Pharmacol. Biochem. Beh. 130: 53–58.
  • Chroœciñska-Krawczyk, M., Jargiello-Baszak, M., Andres-Mach, M., Luszczki, J.J. Czuczwar, S.J. (2016). Influence of caffeine on the protective activity of gabapentin and topiramate in a mouse model of generalized tonic-clonic seizures. Pharmacol. Reports. 68(4): 680–685.
  • Joshi, R., Reeta, K.H., Sharma, S.K., Tripathi, M., Gupta, Y.K. (2015). Pharmacodynamic and pharmacokinetic interaction of Panchagavya Ghrita with phenytoin and carbamazepine in maximal electroshock induced seizures in rats. Ayu. 36(2): 196.
  • Mishra, A., Punia, J.K., Bladen, C., Zamponi, G.W., Goel, R.K. (2015). Anticonvulsant mechanisms of piperine, a piperidine alkaloid. Channels. 9(5): 317–323.
  • Showraki, A., Emamghoreishi, M., Oftadegan, S. (2016). Anticonvulsant effect of the aqueous extract and essential oil of Carum carvi L. Seeds in a Pentylenetetrazol model of seizure in mice. Iran J. Med. Sci. 41(3): 200.
  • Moreau, J.L., Pieri, L., Prud’hon, B. (1989). Convulsions induced by centrally administered NMDA in mice: effects of NMDA antagonists, benzodiazepines, minor tranquilizers and anti- convulsants. Brit J. Pharmacol. 98(3): 1050–1054.
  • Yamaguchi, S.I., Donevan, S.D., Rogawski, M.A. (1993). Anticonvulsant activity of AMPA/ kainate antagonists: comparison of GYKI 52466 and NBQX in maximal electroshock and chemoconvulsant seizure models. Epilepsy Res. 15(3): 179–184.
  • Aburawi, S.M., Elhwuegi, A.S., Ahmed, S.S., Saad, S.F., Attia, A.S. (2000). Effects of acute and chronic Triazolam treatments on brain GABA levels in albino rats. Acta Neurobiol. Exp. 60(4): 447–456.
  • Ishola, I.O., Olayemi, S.O., Yemitan, O.K., Ekpemandudiri, N.K. (2013). Mechanisms of anticonvulsant and sedative actions of the ethanolic stem-bark extract of Ficus sur Forssk (Moraceae) in rodents. Pak. J. Biol. Sci. 16(21): 1287-1294.
  • Nogueira, E., Vassilieff, V.S. (2000). Hypnotic, anticonvulsant and muscle relaxant effects of Rubus brasiliensis. Involvement of GABAA-system. J. Ethnopharmacol. 70(3): 275–280.
  • Viswanatha, G.L., Mohan, C.G., Shylaja, H., Yuvaraj, H.C., Sunil, V. (2013). Anticonvulsant activity of 1, 2, 3, 4, 6-penta-O-galloyl--D-glucopyranose isolated from leaves of Mangifera indica. Naunyn-Schmiedeberg’s Arch Pharmacol. 386(7): 599–604.
  • Löscher, W. (2011). Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure. 20(5): 359–368.
  • Snead, O.C., Banerjee, P.K., Burnham, M., Hampson, D. (2000). Modulation of absence seizures by the GABAA receptor: a critical role for metabotropic glutamate receptor 4 (mGluR4). J. Neurosci. 20(16): 6218–6224.
  • Huang, R.Q., Bell-Horner, C.L., Dibas, M.I., Covey, D.F., Drewe, J.A., Dillon, G.H. (2001). Pentylenetetrazole-induced inhibition of recombinant -aminobutyric acid type A (GABAA) receptors: mechanism and site of action. J. Pharmacol. Exp. Ther. 298(3): 986–995.
  • Psarropoulou, C., Matsokis, N., Angelatou, F., Kostopoulos, G. (1994). Pentylenetetrazol induced seizures decrease γ-aminobutyric acid mediated recurrent inhibition and enhance adenosine mediated depression. Epilepsia. 35(1): 12–19.
  • Shannon, M., Albers, G., Burkhart, K., Liebelt, E., Kelley, M., McCubbin, M.M., Hoffman, J., Massarella, J. (1997). Safety and efficacy of flumazenil in the reversal of benzodiazepine- induced conscious sedation. J. Pediatr. 131(4): 582–586.
  • Rundfeldt, C., Wlaz, P., Hönack, D., Löscher, W. (1995). Anticonvulsant tolerance and withdrawal characteristics of benzodiazepine receptor ligands in different seizure models in mice. Comparison of diazepam, bretazenil and abecarnil. J. Pharmacol. Exp. Ther. 275(2): 693–702.
  • Greenfield, Jr L.J. (2013). Molecular mechanisms of antiseizure drug activity at GABAA receptors. Seizure. 22(8): 589–600.
  • Li, J., Fish, R.L., Cook, S.M., Tattersall, F.D., Atack, J.R. (2006). Comparison of in vivo and ex vivo [3H] flumazenil binding assays to determine occupancy at the benzodiazepine binding site of rat brain GABAA receptors. Neuropharmacol. 51(1): 168–172.
  • Uhlíøová, L., Šustková-Fišerová, M., Kršiak, M. (2004). Behavioral effects of flumazenil in the social conflict test in mice. Psychopharmacol. 171(3): 259–269.
  • Leander, J.D., Lawson, R.R., Ornstein, P.L., Zimmerman, D.M. (1988). N-Methyl-d-aspartic acid-induced lethality in mice: selective antagonism by phencylidine-like drugs. Brain Res. 448(1): 115–120.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.