44
Views
1
CrossRef citations to date
0
Altmetric
Articles

Optimization of Conditions for Production of Lovastatin, A Cholesterol Lowering Agent, from a Novel Endophytic Producer Meyerozyma guilliermondii

&
Pages 192-203 | Received 17 Jan 2020, Accepted 09 May 2020, Published online: 13 Jul 2020

References

  • Pandey, V.V., Varshney, V.K. and Pandey, A. (2019). Lovastatin: A Journey from Ascomycetes to Basidiomycetes Fungi. J. Biol. Act. Prod Nat. 9(3): 162-178.
  • Manzoni, M. and Rollini, M. (2002). Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl. Microbiol. Biotechnol. 58: 555-564.
  • Subhan, M., Faryal, R. and Macreadie, I. (2016). Exploitation of Aspergillus terreus for the production of natural statins. J. Fungi. 2(2): 13.
  • Barrios-Gonzales, J. and Miranda, R.U. (2010). Biotechnological production and applications of statins. Appl. Microbiol. Biotechnol. 85: 869-883.
  • Benner, J.S., Smith, T.W., Klingman, D., Tierce, J.C., Mullins, C.D., Pethich, N., et al. (2005). Cost-effectiveness of rosuvastatin compared with other statins from a managed care perspective. Value in Health. 8(6): 618-628.
  • Holker, U., Hofer, M. and Lenz, J. (2004). Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl. Microbiol. Biotechnol. 64: 175-186.
  • Shaligram, N.S., Singh, S.K., Singhal, R.S., Pandey, A. and Szakacs, G. (2009). Compactin production studies using Penicillium brevicompactum under solid-state fermentation conditions. Appl. Biochem. Biotechnol. 159: 505-520.
  • Suryanarayan, S. and Mazumdar, K. (2001). Solid state fermentation. US Patent 6,197,573.
  • Praveen, V.K., Bhargavi, S.D. and Savitha, J. (2014). Endophytic Fungi: A Poor Candidate for the Production of Lovastatin. Br. Microbiol. Res. J. 4(12): 1511-1520.
  • Wangchuk, P. (2018). Therapeutic Applications of Natural Products in Herbal Medicines, Biodiscovery Programs, and Biomedicine. J. Biol. Act. Prod. Nat. 8(1): 1-20.
  • Akshatha, J.V., Prakash, H.S. and Nalini, M.S. (2016). Actinomycete Endophytes from the Ethno Medicinal Plants of Southern India: Antioxidant Activity and Characterization Studies. J. Biol. Act. Prod. Nat. 6(2): 166-172.
  • Aswani, P., Tijith, K., George and Jisha, M.S. (2017). Characterization of bioactive metabolites of endophytic Fusarium Solani isolated from Withania somnifera. J. Biol. Act. Prod Nat. 7(6): 411-426.
  • Ravuri, M. and Shivakumar, S. (2018). Lovastatin Production from Endophytic Meyerozyma guilliermondii isolated from Hibiscus rosa-sinensis. Int. J. Biol. Pharm. Allied Sci. 7(8): 1454-1463.
  • Andriy, A. Sibirny. (1996). Pichia guilliermondii. In: Wolf, K. ed. Nonconventional Yeasts in Biotechnology. Springer, Berlin, Heidelberg. 255-275.
  • Rodrigues, R.C.L.B., Felipe, M.G.A, Roberto I.C. and Vitolo, M. (2003). Batch xylitol production by Candida guilliermondii FTI 20037 from sugarcane bagasse hemicellulosic hydrolyzate at controlled pH values. Bioprocess Biosyst. Eng. 26: 103-107
  • Joel, E.l. and Bhimba, V. (2013). Evaluation of secondary metabolites from mangrove associated fungi Meyerozyma guilliermondii. Alexandria Journal of Medicine. 49: 189-194.
  • Kurtzman, C.P. and Suzuki, M. (2010). Meyerozyma. In: Kurtzman, C.P., Fell, J.W. and Boekhout, T. ed. The Yeasts, a Taxonomic Study, 5th ed. Vol. 2. Amsterdam, Elsevier. Pp. 621-624.
  • Marco, L.D., Epis, S., Capone, A., Martin, E., Bozic, J., Crotti, E. et al. (2018). The Genomes of Four Meyerozyma caribbica Isolates and Novel Insights into the Meyerozyma guilliermondii Species Complex. G3: Genes, Genomes, Genet. 8: 3755-3759.
  • Fawzia, J.S., Noor, A.I., Mohammed, A. and Anis, S.M.H. (2016). Optimization of the protoplast fusion conditions of Saccharomyces cerevisiae and Pichia stipitis for improvement of bioethanol production from biomass. Asian J. Biol. Sci. 9: 10-18.
  • Raghunath, R., Radhakrishna, A., Angayarkanni, J. and Palaniswamy, M. (2012). Production and cytotoxicity studies of lovastatin from Aspergillus niger PN2 an endophytic fungi isolated from Taxus baccata. Int. J. Appl. Biol. Pharm Technol. 3: 342-351.
  • El-Din, M.M., Attia, K.A., Nassar, M.W. and Kaddah, M.M. (2010). Colorimetric determination of simvastatin and lovastatin in pure form and in pharmaceutical formulations. Spectrochim Acta Part A. 76: 423-428.
  • Latha, P.M., Chanakya, P. and Srikanth, M. (2012). Lovastatin production by Aspergillus fischeri under solid state fermentation from coconut oil cake. Biotechnology Society of Nepal. 2(1): 26-36.
  • Jahromi, M.H., Liang, J.B., Ho, W.H., Mohamad, R., Goh, Y.M. and Shokryazdan, P. (2012). Lovastatin Production by Aspergillus terreus Using Agro-Biomass as Substrate in Solid State Fermentation. J. Biomed. Biotechnol. doi:10.1155/2012/196264.
  • Praveen, V.K., Bhargavi, S.D. and Savitha, J. (2016). Optimization of Culture Conditions for Maximal Lovastatin Production by Aspergillus terreus (KM017963) under Solid State Fermentation. HAYATI Journal of Biosciences. 22(4): 174-180.
  • Bizukojc, M., Pawlowska, B. and Ledakowicz, S. (2007). Supplementation of the cultivation media with b-group vitamins enhances lovastatin biosynthesis by Aspergillus terreus. Journal of Biotechnology. 127: 258-268.
  • Pansuriya, R.C. and Singhal, R.S. (2010). Response surface methodology for optimization of production of lovastatin by solid state fermentation. Brazilian J. Microbiology. 41(1): 164-172.
  • Lopéz, J.L.C., Pérez, J.A.S., Sevilla, J.M.F., Fernández, F.G.A., Grima, E.M. and Chisti, Y. (2003). Production of lovastatin by Aspergillus terreus: effects of the C:N ratio and the principal nutrients on growth and metabolite production. Enzyme Microb. Technol. 33(2-3): 270-77.
  • Zhang, W., Zhang, Z., Bao, L., Zhang, X. and Cui, H. (2018). Alcohol dehydrogenase of a novel algae fermentation strain Meyerozyma guilliermondii. Chem. Biochem. Eng. Q. 32(1): 117-123.
  • Maxwell, G.R.S., Nennaya, I.S.U. and Akpan, E.U.G. (2017). Preliminary analysis of sugar supplementation on alcoholic fermentation by Meyerozyma guilliermondii. Ecology and Evolutionary Biology. 2(5): 68-77.
  • Da Silveira, F.A., Fernandes, T.A.R., Bragança, C.R.S., Balbino, T.R., Diniz, R.H.S., Passos, F.M.L. et al. (2019). Isolation of xylose-assimilating yeasts and optimization of xylitol production by a new Meyerozyma guilliermondii strain. Int. Microbiol. https://doi.org/10.1007/ s10123-019-00105-0
  • Valera, H.R., Gomes, J., Lakshmi, S., Gururaja, R., Suryanarayan, S. and Kumar, D. (2005). Lovastatin production by solid state fermentation using Aspergillus flavipes. Enzyme Microb. Technol. 37(5): 521-526.
  • Xu, B., Wang, Q., Jia, X. and Sung, C. (2005). Enhanced lovastatin production by solid state fermentation of Monascus ruber. Biotechnology and Biochemical Engineering. 10: 78-84.
  • Bizukojc, M., Pawlak, M., Boruta, T. and Gonciarz, J. (2012). Effect of pH on biosynthesis of lovastatin and other secondary metabolites by Aspergillus terreus ATCC 20542. Journal of Biotechnology. 162: 253-261.
  • Bizukojc, M. and Ledakowicz, S. (2008). Biosynthesis of lovastatin and (+)-geodin by Aspergillus terreus in batch and fed batch culture in the stirred tank bioreactor. Biochem. Eng. J. 42: 187-207.
  • Barrios-Gonzalez, J., Banos, J.G., Covarrubias, A.A. and Garay-Arroyo, A. (2008). Lovastatin biosynthetic genes of Aspergillus terreus are expressed differentially in solid state and in liquid submerged fermentation. Appl. Microbiol. Biotechnol. 79(2): 179-186.
  • Banos, J.G., Tomasini, A., Szakacs, G. and Barrios-Gonzalez, J. (2009). High lovastatin production by Aspergillus terreus in solid state fermentation on polyurethane foam: an artificial inert support. J. Biosci. Bioeng. 108(2): 105-110.
  • Mulder, K.C.L., Mulinari, F., Franko, O.L., Soares, M.S.F., Magalhaes, B.S. and Parachin, N.S. (2015). Lovastatin production: From molecular basis to industrial process optimization. Biotechnol. Adv. 3(6): 648-665.
  • Dixit, R. and Tallapragada, P. (2016). Statistical optimization of lovastatin and confirmation of nonexistence citrinin under solid state fermentation by Monascus sanguineus. J. Food Drug Anal. 24(2): 433-440.
  • Hell, J., Kneifel, W., Rosenau, T. and Böhmdorfer, S. (2014). Analytical techniques for the elucidation of wheat bran constituents and their structural features with emphasis on dietary fiber-A review. Trends Food Sci. Technol. 35(2): 102-113.
  • Novak, N., Gerdin, S. and Berovic, M. (1997). Increased lovastatin formation by Aspergillus terreus using repeated fed batch process. Biotechnol. Lett. 19(10): 947-948.
  • Manzoni, M., Rollini, M., Bergomi, S. and Cavazzoni, V. (1998). Production and purification of statins from Aspergillus terreus strains. Biotechnol. Tech. 12(7): 529-532.
  • Lai, L.S.T., Tsai, T.R., Wang, T.C. and Cheng, T.Y. (2005). The influence of culturing environments on lovastatin production by Aspergillus terreus in submerged cultures. Enzyme Microb. Technol. 36: 737-748.
  • Lopez, J.L.C., Perez, J.A.S., Sevilla, J.M.F., Porcel, E.M.R. and Chisti, Y (2005). Pellet morphology, culture rheology and lovastatin production in cultures of Aspergillus terreus. Journal of Biotechnology. 116(1): 61-77.
  • Bizukojc, M. and Ledakowicz, S. (2007a). A Macrokinetic modelling of the biosynthesis of lovastatin by Aspergillus terreus. Journal of Biotechnology. 130(4): 422-435.
  • Bizukojc, M. and Ledakowicz, S. (2007b). Simultaneous biosynthesis of (+)-geodin by a lovastatin producing fungus Aspergillus terreus. Journal of Biotechnology. 132(4): 453-460.
  • Osman, M.E., Khattab, O.H., Zaghlol, G.M. and El-Hameed, R.M. (2011). Optimization of Some Physical and Chemical Factors for Lovastatin Productivity by Local Strain of Aspergillus terreus. Aust. J. Basic Appl. Sci. 5(6): 718-732.
  • Watcharawipas, A., Watanabe, D. and Takagi, H. (2018). Sodium acetate responses in Saccharomyces cerevisiae and the ubiquitin ligase Rsp5. Front Microbiol. 9: 2495.
  • Singh, V., Haque, S., Niwas, R., Srivastava, A., Pasupuleti, M. and Tripathi, C.K.M. (2016). Strategies for fermentation medium optimization: An in-depth review. Front Microbiol. 7: 2087
  • Jia, Z., Zhang, X., Zhao, Y. and Cao, X. (2009). Effects of divalent metal cations on lovastatin biosynthesis from Aspergillus terreus in chemically deûned medium. World J. Microbiol. Biotechnol. 25: 1235-1241.
  • Hajjaj, H., Neiderberger, P. and Duboc, P. (2001). Lovastatin Biosynthesis by Aspergillus terreus in a Chemically Deûned Medium. Appl. Environ. Microbiol. 67(6): 2596-2602.
  • Rahim, M.H.A., Hasan, H., Montoya, A. and Abbas, A. (2015). Lovastatin and (+)-geodin production by Aspergillus terreus from crude glycerol. Eng. Life Sci. 15(2): 220-228.
  • Hasim, D. (2008). Optimizing Angkak Pigments and Lovastatin Production by Monascus purpureus. HAYATI Journal of Biosciences. 15(2): 61-66.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.