86
Views
0
CrossRef citations to date
0
Altmetric
Articles

Thiocolchicoside and Colchicine Induced Apoptosis in Breast Cancer (MCF-7) Cells Via Up-regulated Expression of p53 Tumor Suppressor Protein Gene: An In vitro and In silico Docking Approaches

, , , , &

References

  • Siegel, R., Ward, E., Brawley, O., Jemal, A. (2011). Cancer statistics. Cancer J. Clinicians. 61: 212-236. doi: 10.3322/caac.20121
  • Prasad, C.P., Rath, G., Mathur, S., Bhatnagar, D., Ralhan, R. (2009). Potent growth suppressive activity of curcumin in human breast cancer cells: Modulation of Wnt/β-catenin signaling. Chemico-Biological Inter. 181(2): 263-271. doi: 10.1016/j.cbi.2009.06.012
  • Deroo, B.J., Korach, K.S. (2006). Estrogen receptors and human disease. J. Clinical Invest. 116(3): 561-570. doi: 10.1172/JCI27987
  • Irvin Jr, W.J., Carey, L. A. (2008). What is triple-negative breast cancer? Eur. J. Cancer. 44(18): 2799-2805. doi: 10.1016/j.ejca.2008.09.034
  • Podo, F., Buydens, L.M., Degani, H., Hilhorst, R., Klipp, E., Gribbestad, I.S., Postma, G.J. (2010). Triple-negative breast cancer: present challenges and new perspectives. Mol. Oncol. 4(3): 209-229. doi: 10.1016/j.molonc.2010.04.006
  • De Laurentiis, M., Cianniello, D., Caputo, R., Stanzione, B., Arpino, G., Cinieri, S., De Placido, S. (2010). Treatment of triple negative breast cancer (TNBC): current options and future perspectives. Cancer Treat. Rev. 36: S80-S86. doi: 10.1016/S0305-7372(10)70025-6
  • Hall, J.M., Lee, M.K., Newman, B., Morrow, J.E., Anderson, L.A., Huey, B., King, M.C. (1990). Linkage of early-onset familial breast cancer to chromosome 17q21. Science. 250(4988): 1684-1689. doi: 10.1126/science.2270482
  • Venkitaraman, A.R. (2002). Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell. 108(2): 171-182. doi: 10.1016/S0092-8674(02)00615-3
  • Vogelstein, B., Lane, D., Levine, A.J. (2000). Surfing the p53 network. Nature. 408(6810): 307. doi: 10.1038/35042675
  • Vousden, K.H., Lu, X. (2002). Live or let die: the cell’s response to p53. Nature Rev. Cancer. 2(8): 594. doi: 10.1038/nrc864
  • Bunz, F., Dutriaux, A., Lengauer, C., Waldman, T., Zhou, S., Brown, J.P., Vogelstein, B. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science. 282(5393): 1497-1501. doi: 10.1126/science.282.5393.1497
  • Kastan, M.B., Zhan, Q., El-Deiry, W.S., Carrier, F., Jacks, T., Walsh, W.V., Fornace Jr, A.J. (1992). A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 71(4): 587-597. doi: 10.1016/0092-8674(92)90593-2
  • Zhang, W., Guo, X.Y., Hu, G.Y., Liu, W.B., Shay, J.W., Deisseroth, A.B. (1994). A temperature sensitive mutant of human p53. EMBO J. 13(11): 2535-2544. doi: 10.1002/j.1460-2075.1994.tb06543.x
  • Rowan, S., Ludwig, R.L., Haupt, Y., Bates, S., Lu, X., Oren, M., Vousden, K.H. (1996). Specific loss of apoptotic but not cell cycle arrest function in a human tumor derived p53 mutant. EMBO J. 15(4): 827-838. doi: 10.1002/j.1460-2075.1996.tb00418.x
  • Lowe, S.W., Schmitt, E.M., Smith, S.W., Osborne, B.A., Jacks, T. (1993). p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature. 362(6423): 847. doi: 10.1038/362847a0
  • Nuki, G., Simkin, P.A. (2006). A concise history of gout and hyperuricemia and their treatment. Arthritis Res. Therapy. 8(S1): S1.
  • Woodcock, J., Okada, S. (2010). Incentives for drug development-the curious case of colchicine. New England J. Med. 363(15): 1484. doi: 10.1056/NEJMc1007963
  • Imazio, M. (2012). Contemporary management of pericardial diseases. Curr. Opin. Cardiol. 27(3): 308-317. doi: 10.1097/HCO.0b013e3283524fbe
  • Lu, Y., Chen, J., Xiao, M., Li, W., Miller, D.D. (2012). An overview of tubulin inhibitors that interact with the colchicine binding site. Pharmaceutical Res. 29(11): 2943-2971. doi: 10.1007/s11095-012-0828-z
  • Sivakumar, G. (2013). Colchicine semisynthetics: chemotherapeutics for cancer? Curr. Med. Chem. 20(7): 892-898.
  • Reuter, S., Prasad, S., Phromnoi, K., Ravindran, J., Sung, B., Yadav, V.R., Aggarwal, B.B. (2010). Thiocolchicoside exhibits anticancer effects through downregulation of NF-κB pathway and its regulated gene products linked to inflammation and cancer. Cancer Prevent. Res. 3(11): 1462-1472. doi: 10.1158/1940-6207.CAPR-10-0037
  • Tüzün, F., Ünalan, H., Öner, N., Özgüzel, H., Kirazli, Y., Ýçaðasioðlu, A., Basar, G. (2003). Multicenter, randomized, double-blinded, placebo-controlled trial of thiocolchicoside in acute low back pain. Joint Bone Spine. 70(5): 356-361. doi: 10.1016/S1297-319X(03)00075-7
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B.A., Thiessen, P.A., Yu, B., Zaslavsky, L., Zhang, J., Bolton, E.E. (2019). PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 47(D1), D1102-D1109. doi: 10.1093/nar/gky1033
  • O’Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., Hutchison, G.R. (2011). Open Babel: An open chemical toolbox. J. Cheminformatics. 3(1): 33. doi: 10.1186/1758-2946-3-33
  • Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminformatics. 4(1): 17. doi: 10.1186/1758-2946-4-17
  • Halgren, T.A. (1996). Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 17(5 6): 490-519. doi: 10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
  • Sanner, M.F., Olson, A.J., Spehner, J.C. (1996). Reduced surface: an efficient way to compute molecular surfaces. Biopolymers. 38(3): 305-320. doi: 10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y
  • Sanner, M.F. (1999). Python: a programming language for software integration and development. J. Mol. Graph. Model. 17: 57-61.
  • Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30: 2785-2791. doi: 10.1002/jcc.21256
  • Okorokov, A.L., Sherman, M.B., Plisson, C., Grinkevich, V., Sigmundsson, K., Selivanova, G., Milner, J., Orlova, E.V. (2006). The structure of p53 tumour suppressor protein reveals the basis for its functional plasticity. EMBO J. 25: 5191-5200. doi: 10.1038/sj.emboj.7601382
  • Trott, O., Olson, A.J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31: 455-461.
  • Visualizer, D.S. (2012). Release 3.5. Accelrys Inc, San Diego, CA, USA, 2012.
  • Sun, Y., Lin, X., Chang, H. (2016). Proliferation inhibition and apoptosis of breast cancer MCF-7 cells under the influence of colchicine. J. BUON. 3: 570-575.
  • Finkelstein, Y., Aks, S.E., Hutson, J.R., Juurlink, D.N., Nguyen, P., Dubnov-Raz, G., Pollak, U., Koren, G., Bentur, Y. (2010). Colchicine poisoning: the dark side of an ancient drug. Clin. Toxicol. (Phila). 48: 407-414. doi: 10.3109/15563650.2010.495348
  • Budchart, P., Khamwut, A., Sinthuvanich, C., Ratanapo, S., Poovorawan, Y. (2017). T-thienprasert NP. Partially purified Gloriosa superba peptides inhibit colon cancer cell viability by inducing apoptosis through p53 up regulation. Amer. J. Med. Sci. 354: 423-429. doi: 10.1016/j.amjms.2017.06.005
  • Decleves, X., Chappey, O., Boval, B., Niel, E., Scherrmann, J.M. (1998). P-glycoprotein is more efficient at limiting uptake than inducing efflux of colchicine and vinblastine in HL-60 cells. Pharmaceutical Res. 15: 712-718. doi: 10.1023/A:1011914902121
  • Liu, J., Li, C., Ahlborn, T.E., Spence, M.J., Meng, L., Boxer, L.M. (1999). The expression of p53 tumor suppressor gene in breast cancer cells is down-regulated by cytokine oncostatin M. Cell Grow. Different. 10: 677-684.
  • Mittal, R.R., McKinnon, R.A., Sorich, M.J. (2009). Comparison data sets for benchmarking QSAR methodologies in lead optimization. J. Chem. Inform. Model. 48: 1810-1820. doi: 10.1021/ci900117m
  • Kirkland, D., Pfuhler, S., Tweats, D., Aardema, M., Corvi, R., Darroudi, F., Kasper, P. (2007). How to reduce false positive results when undertaking in vitro genotoxicity testing and thus avoid unnecessary follow-up animal tests: report of an ECVAM workshop. Mut. Res. 628: 31-55. doi: 10.1016/j.mrgentox.2006.11.008
  • Xu, Y. (2003). Regulation of p53 responses by post-translational modifications. Cell Death Different. 10: 400-403. doi: 10.1038/sj.cdd.4401182
  • Muthukala, B., Sivakumari, K., Ashok, K. (2015). In silico docking of quercetin compound against the Hela cell line proteins. Inter. J. Curr. Pharmaceutical Res. 7: 13-16.
  • Asif, M., Syeda Naqsh, Z., Sobiah, R. (2016). Comparative modeling and molecular docking study of p53 and AKT1, genes of lung cancer pathways. Inter. J. Clini. Oncol. Cancer Res. 1: 6-14.
  • Mohankumar, K., Pajaniradje, S., Sridharan, S., Singh, V.K., Ronsard, L., Banerjea, A.C., Rajagopalan, R. (2014). Mechanism of apoptotic induction in human breast cancer cell, MCF-7, by an analog of curcumin in comparison with curcumin-an in vitro and in silico approach. Chemico-Biological Inter. 210: 51-63. doi: 10.1016/j.cbi.2013.12.006
  • Erdal, E., Berndtsson, M., Castro, J., Brunk, U., Shoshan, M.C., Linder, S. (2004). Induction of lysosomal membrane permeabilization by compounds that activate p53-independent apoptosis. Proc. Nat. Acad. Sci. USA. 102: 192-197. doi: 10.1073/pnas.0408592102
  • Naik, P.K., Santoshi, S., Rai, A., Joshi, H.C. (2011). Molecular modelling and competition binding study of Br-noscapine and colchicine provide insight into noscapinoid-tubulin binding site. J. Mol. Graph. Model. 29: 947-955. doi: 10.1016/j.jmgm.2011.03.004
  • Majcher, U., Klejborowska, G., Moshari, M., Maj, E., Wietrzyk, J., Bartl, F., Huczyñski, A. (2018). Antiproliferative activity and molecular docking of novel double-modified colchicine derivatives. Cells. 7: 192. doi: 10.3390/cells7110192
  • Giannakakou, P., Nakano, M., Nicolaou, K.C., O’Brate, A., Yu, J., Blagosklonny, M.V., Fojo, T. (2002). Enhanced microtubule-dependent trafficking and p53 nuclear accumulation by suppression of microtubule dynamics. Proc. Nat. Acad. Sci. USA. 99: 10855-10860. doi: 10.1073/pnas.132275599

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.