99
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Metabolite Profiling of Peltophorum africanum Sond. & Saraca indica L. Leaves via HR-UPLC/PDA/ESI/MS Analysis and Assessment of their Anti-Diabetic Potential

, , , , , & show all
Pages 442-466 | Received 03 Sep 2020, Accepted 09 Jun 2021, Published online: 06 Dec 2021

References

  • Wild, S., Roglic, G., Green, A., Sicree, R., King, H. (2004). Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care. 27: 1047-1053.
  • Akhtar, M.S., Ali, M.R. (1984). Study of antidiabetic effect of a compound medicinal plant prescription in normal and diabetic rabbits. Journal of Pakistan Medical Association. 34: 239–244.
  • Shai, L.J., Magano, S.R., Lebelo, S.L., Mogale, A.M.(2011). Inhibitory effects of five medicinal plants on rat alpha-glucosidase: Comparison with effects on yeast of alpha-glucosidase. Journal of Medicinal Plants Research. 5(13): 2863-2867.
  • Mongalo, N. (2013). Peltophorum africanum Sond (Mosetlha): a review of its ethnomedicinal uses, toxicology, phytochemistry and pharmacological activities. Journal of Medicinal Plants Research. 7(48): 3484-3491.
  • Van der Merwe, D. (2000). Use of ethnoveterinary medicine plants in cattle by Setwana-speaking people in the Madikwe area of the North West Province. MSc Dissertation. South Africa: University of Pretoria.
  • McGaw, L.J., Eloff, J.N. (2008). Ethno veterinary use of the Southern African plants and scientific evaluation of their medicinal properties. Journal of Ethnopharmacol. 119: 559-574.
  • Maroyi, A. (2011). Ethnobotanical survey of medicinal plants used by the lay people in Nhema communal area, Zimbabwe. Journal of Ethnopharmacol. 136: 347-354.
  • Mazimba. (2014). Pharmacology and phytochemistry studies in Peltophorum africanum. Bulletin of Faculty of Pharmacy, Cairo University. 52(1): 145-153.
  • Pradhan, P., Joseph, L., Gupta, V., Chulet, R., Arya, H., Verma, R. and Bajpai, A. (2009). Saraca asoca (Ashoka): A Review. Journal of Chemical and Pharmaceutical Research. 1(1): 62-71.
  • Mishra, A., Kumar, A., Rajbhar, N. and Kumar, A. (2013). Phytochemical and pharmacological importance of Saraca indica. Int. J. Pharm. Chem. Sci. 2: 1009-1013.
  • Middelkoop, T.B. and Labadie, R.P. (1986). An in vitro Examination of Bark Extracts from Saraca asoca (Roxb.) de Wilde and Rhododendron Arboreum Sm. for Oxytocic Activity. International Journal of Crude Drug Research. 24(1): 41-44.
  • Bhandary, M.J., Chandrashekhar, K.R., Kaveriappa, K.M. (1995). Medical ethnobotany of the Siddis of Uttara Kannada District, Karnataka, India. Journal of Ethnopharmacology. 47: 149-156.
  • Srivastava, G.N., Bagchi, G.D. and Srivastava, A.K. (1988). Pharmacognosy of Ashoka stem bark and its adulterants. International Journal of Crude Drug Research. 26(2): 65-72.
  • Kumar, S., Narwal, S., Kumar, D., Singh, G., Narwal, S., Arya, R. (2012). Evaluation of antihyperglycemic and antioxidant activities of Saracaasoca (Roxb.) De Wild leaves in streptozotocin induced diabetic mice. Asian Pacific Journal of Tropical Disease. 2(3): 170-176.
  • Pugh, M.B. ed. (2000). Stedman's Medical Dictionary (27th ed.). Baltimore, Maryland, USA: Lippincott Williams & Wilkins. p. 65. ISBN 978-0-683-40007-6.
  • Voet, D. and Voet. (2005). Biochimie. (2e éd.). Bruxelles: De Boeck. 1583 pp
  • Naguib, A.M., Ebrahim, M.E., Aly, H.F., Metawaa, H.M., Mahmoud, A.H., Mahmoud, E.A., Ebrahim, F.M. (2012). Phytochemical screening of Nepeta cataria extracts and their in vitro inhibitory effects on free radicals and carbohydrate-metabolising enzymes. Natural Product Research. 26: 2196-2198.
  • OECD guidelines for the testing of chemicals. (2008). Acute Oral Toxicity-Up-and-Down-Procedure (UDP) Methods.
  • Verma, A., Jana, G.K., Sen, S., Chakraborty, R., Sachan, S., Mishra, A. (2010). Pharmacological Evaluation of Saraca indica Leaves for Central Nervous System Depressant Activity in Mice. Journal of Pharmarmaceutical. Science & Research. 2(6): 338-343.
  • Stevens, M.J., Li, F., Drel, V.R., Abatan, O.I., Kim, H., Burnett, D., Larkin, D., Obrosova, I.G. (2007). Nicotinamide Reverses Neurological and Neurovascular Deficits in Streptozotocin Diabetic Rats. The Journal of Pharmacology And Experimental Therapeutics. 320: 458-464.
  • Junod, A., Lambert, A.E., Stauffacher, W., Renold, A.E. (1969). Diabetogenic action of streptozotocin: relationship of dose to metabolic response. Journal of Clinical Investigation. 48: 2129-2139.
  • Portha, B. and Serradas, P. (1991). Improvement in glucose-induced insulin secretion in diabetic rats after long-term gliclazide treatment: a comparative study using different models of non-insulin-dependent diabetes mellitus induced by neonatal streptozotocin. American Journal of Medicine. 90(6A): 15s-21s.
  • Bancroft, J.D. and Gamble, M. (2008). Theory and Practice of Histological Techniques. 6th Edition, Churchill Livingstone, Elsevier, China.
  • Trinder, P. (1969). Determination of glucose in blood using glucose oxidase with on alternative oxygen receptor. Annals of Clinical Biochemistry. 6: 24-27.
  • Bonger, A. and Garcia-Webb, P.C. (1984). Peptide Measurement: Methods and Clinical Utility. CRC Critical Reviews in Clinical Laboratory Sciences. 19: 297.
  • Ohkawa, H., Ohishi, W., Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry. 95: 351-358.
  • Otify, A.M., El-Sayed, Aly, M., Michel, C.G., Farag, M.A. (2019). Metabolites profiling of date palm (Phoenix dactylifera L.) commercial by-products (pits and pollen) in relation to its antioxidant effect: a multiplex approach of MS and NMR metabolomics. Metabolomics. 15(9): 119.
  • Farag, M.A., AbouZeid, A.H., Hamed, M.A., Kandeel, Z., El-Rafie, H.M., El-Akad, R.H. (2015). Metabolomic fingerprint classification of Brachychiton acerifolius organs via UPLC-qTOF-PDA-MS analysis and chemometrics. Natural Product Research. 29(2): 116-124.
  • Davis, B.D. and J.S. Brodbelt (2004). Determination of the glycosylation site of flavonoid monoglucosides by metal complexation and tandem mass spectrometry. Journal of the American Society for Mass Spectrometry. 15(9): 1287-1299.
  • Wishart, D.S., Feunang, Y.D., Marcu, A., Guo, A.C., Liang, K., Vázquez-Fresno, R., Sajed, T., Johnson, D., Li, C., Karu, N., Sayeeda, Z., Lo, E., Assempour, N., Berjanskii, M., Singhal, S., Arndt, D., Liang, Y., Badran, H., Grant, J., Serra-Cayuela, A., Liu, Y., Mandal, R., Neveu, V., Pon, A., Knox, C., Wilson, M., Manach, C. and Scalbert, A. (2018). HMDB 4.0: the human metabolome database (2018) (https://hmdb.ca/metabolites/HMDB0034061). Nucleic acids research. 46(D1): D608-d617.
  • Hossain, M.B., Rai, D.K., Brunton, N.P., Martin-Diana, A.B. and Barry-ryan, C. (2010). Characterization of phenolic composition in Lamiaceae spices by LC-ESI-MS/MS. Journal of Agricultural and Food Chemistry. 58(19): 10576-10581.
  • Tolonen, A., Joutsamo, T., Mattlla, S., Kämärä, T., Jalonen, J. (2002). Identification of Isomeric Dicaffeoylquinic Acids from Eleutherococcus senticosus using HPLC-ESI/TOF/MS and 1H-NMR Methods. Phytochemical Analysis. 13: 316-328.
  • Clifford, M.N., Knight, S., Kuhnert, N.J. (2005). Discriminating between the six isomers of dicaffeoylquinic acid by LC-MS. Journal of Agricultural and Food Chemistry. 53(10): 3821-32.
  • Simirgiotis, M.J., Julio, B., Carlos, A., Beatriz, S. (2015). Antioxidant capacities and analysis of phenolic compounds in three endemic Nolana species by HPLC-PDA-ESI-MS. Molecules. 20(6): 11490-11507.
  • Llorent-Martínez, E.J., Ortega-Barrales, P., Zengin, G., Uysal, S., Ceylan, R., Guler, G.O., Mocan, A., Aktumsek, A. (2016). Lathyrus aureus and Lathyrus pratensis: characterization of phytochemical profiles by liquid chromatography-mass spectrometry and evaluation of their enzyme inhibitory and antioxidant activities. RSC Advances. 6: 88996-9006.
  • Sun, Y., Zhang, X., Xue, X., Zhang, Y., Xiao, H., Liang, X. (2009). Rabid identification of polyphenol C-glycosides from swertia fracnchetiana by HPLC-ESI-MS-MS. Journal of Chromatographic Science. 47(3): 190-196.
  • Verardo, V., Arraez-Roman, D., Segura-Carretero, A., Marconi, E., Fernandez-Gutierrez, A. and Caboni, M.F. (2010). Identification of buckwheat phenoliccompounds by reverse phase high performance liquid chromatography electrospray ionization-time of flight-mass spectrometry (RP-HPLC-ESI-TOFMS). Journal of Cereal Science. 52: 170-176.
  • Dou. J., Lee, V.S.Y., Tzen, J.T., Cand Lee, M.V. (2007). Identification and Comparison of Phenolic Compounds in the Preparation of Oolong Tea Manufactured by Semi fermentation and Drying Processes. Journal of Agricultural and Food Chemistry. 55: 7462-7468
  • Fabre, N., Fabre, N., Rustan, I., Hoffmann, E., Leclercq, J. (2001). Determination of flavone flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. Journal of the American Society for Mass Spectrometry. 12(6): 707-715.
  • Sandhu, A.K. and Gu, L.(2010). Antioxidant capacity, phenolic content, and profiling of phenolic compounds in the seeds, skin, and pulp of Vitis rotundifolia (Muscadinegrapes) as determined by HPLC-DAD-ESI-MSn. Journal of Agricultural and Food Chemistry. 58: 4681–4692.
  • Tala, V.R.S., Silva, V.C, Nkengfack, A.E., Dos santos, L.C., Vilegas, W. (2013). Characterization of proanthocyanidins from Parkia biglobosa (Jacq.) G. Don.(Fabaceae) by flow injection analysis-Electrospray ionization ion trap tandem mass spectrometry and liquid chromatography/ electrospray ionization mass spectrometry. Molecules. 18(3): 2803-2820.
  • Ben Said, R., Hamed, A., Mahalel, U., Sulaiman, A., Kowalczyk, M., Moldoch, J., Oleszek, W., Stochmal, A. (2017). Tentative characterization of polyphenolic compounds in the male flowers of Phoenix dactylifera by liquid chromatography coupled with mass spectrometry and DFT. International Journal of Molecular Sciences. 18(3): 512.
  • Rockenbach, I.I., Jungfer, E., Ritter, C., Santiag, B., Thiele, B., Fett, R., Galensa, R. (2012). Characterization of flavan-3-ols in seeds of grape pomace by CE, HPLC-DAD-MSn and LC-ESI-FTICR-MS. Food Research International. 48(2): 848-855.
  • Holse, M., Husted, S., Hansen, A. (2010). Chemical composition of Marama Bean (Tylosema Esculentum). A wild African bean with unexploited potential. Journal of Food Composition and Analysis. 23: 648-657.
  • Priyadarshini, S.E., Babasaheb, S.S., Arju, P.S., Matsyagandha, K.P. (2016). In vivo Anti-inflammatory and Anti-diabetic Potential of Crude Leaf Extracts of Canthium coromandelicum (Burm. f.) Alston. Journal of Biologically Active Products from Nature. 6(3): 195-208.
  • Bathaie, S., Mokarizade, N., Shirali, S. (2012). An overview of the mechanisms of plant ingredients in the treatment of diabetes mellitus. Journal of Medcinal Plant. 4(44): 1-24.
  • Barrajón-Catalán, E., Herranz-López, M., Joven, J., Segura-Carretero, A., Alonso-Villaverde, C., Menéndez, J.A., Micol, V. (2014). Molecular promiscuity of plant polyphenols in the management of age-related diseases: Far beyond their antioxidant properties. In Oxidative Stress and Inflammation in Non-Communicable Diseases-Molecular Mechanisms and Perspectives in Therapeutics. Springer: New York, NY, USA. 141-159.
  • Mamun-Rashid, A., Hossain, M.S., Naim Hassan, B., Kumar, D.M., Sapon, A., Sen, M.K. (2014). A review on medicinal plants with anti-diabetic activity. Journal of Pharmacognosy and Phytochemistry. 3(4): 149-59.
  • Gupta, P.D. and De, A. (2012). Diabetes Mellitus and its herbal treatment. International Journal of Research in Pharmaceutical and Biomedical Sciences. 3(2): 706-21.
  • Krentz, A.J. and Bailey, C.J. (2005). Oral anti-diabetic agents. Drugs. 65: 385-411.
  • Van de Laar, F.A. (2008). Alpha-glucosidase inhibitors in the early treatment of type 2 diabetes. Journal of Vascular Health and Risk Management. 4: 1189-1195.
  • Ventura-Sobrevilla, J., Boone-Villa, V.D., Aguilar, C.N., Román-Ramos, R., Vega-Ávila, E., Campos-Sepúlveda, E., Alarcón-Aguilar, F. (2011). Effect of Varying Dose and Administration of Streptozotocin on Blood Sugar in Male CD1 Mice. Proceedings of the Western Pharmacology Society. 54: 5-9
  • Bedoya, F.J., Solano, F., Lucas, M. (1996). N-monomethyl-arginine and nicotinamide prevent streptozotocin-induced double strand DNA break formation in pancreatic rat islets. Experientia. 52: 344-347
  • Bolaffi, J.L., Nagamatsu, S., Harris, J., Grodsky, G.M. (1987). Protection by thymidine, an inhibitor of polyadenosine diphosphate ribosylation, of streptozotocin inhibition of insulin secretion. Endocrinology. 120: 2117-2122.
  • Nukatsuka, M., Yoshimura, Y., Nishida, M., Kawada, J. (1990). Importance of the concentration of ATP in rat pancreatic beta cells in the mechanism of streptozotocin-induced cytotoxicity. Journal of Endocrinolgy. 127: 161-165.
  • Mahmoud, A.M., Ashour, M.B., Abdel-Moneim, A., Ahmed, O.M. (2012). Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fatfed/streptozotocin-induced type 2 diabetic rats. Diabetes Complications. 26(6): 483-490.
  • Mahmoud, A.M. (2013). Hematological alterations indiabetic rats; role of adipocytokines and effect of citrus flavonoids. EXCLI Journal. 12: 647-657.
  • Kamel, E.M., Mahmoud, A.M., Ahmed, S.A., Lamsabhi, A.M. (2016). Aphytochemical and computational study on flavonoids isolated from Trifolium resupinatum L. and their novel hepatoprotective activity. Food Function. 7(4): 2094-2106.
  • Mennen, L.I., Walker, R., Bennetau-Pelissero, C., Scalbert, A. (2005). Risks and safety of polyphenol consumption. The American Journal of Clinical Nutrition. 81(1): 326S-329S.
  • Liu, Y.-J., Zhan, J., Liu, X.-L., Wang, Y., Ji, J., He, Q-Q. (2014). Dietary flavonoids intake and risk of type 2 diabetes: A meta-analysis of prospective cohort studies [Abstract]. Clinical Nutrition. 33(1): 59-63.
  • Guasch-Ferré, M., Merino, J., Sun, Q., Fitó, M. and Salas-Salvadó, J. (2017). Dietary polyphenols, Mediterranean diet, prediabetes, and type 2 diabetes: A narrative review of the evidence. Oxidative Medicine and Cellular Longevity. 2017: 6723931.
  • Mahmoud, A.M., Ahmed, O.M., Ashour, M.B., Abdel, Moneim, A. (2015). In vivo and in vitro anti-diabetic effects of citrus flavonoids; a study on the mechanism of action. International Journal of Diabetes in Developing Countries. 35(3): 250-263.
  • Jung, U.J., Kim, H.J., Lee, J.S., Lee, M.K., Kim, H.O., Park, E.J., Kim, H.K., Jeong, T.S., Choi, M.S. (2003). Naringin supplementation lowers plasma lipids andenhances erythrocyte antioxidant enzyme activities inhypercholesterolemic subjects. Clinical Nutrition. 22(6): 561–568.
  • Jung, U.J., Lee, M.K., Park, Y.B., Kang, M.A., Choi, M.S. (2006). Effect of citrus flavonoids on lipid metabolism andglucose-regulating enzyme mRNA levels in type-2diabetic mice. The International Journal of Biochemistry & Cell Biology. 38(7): 1134-1145.
  • Mariana, T.P., Rolfy, O.A., Rafael, Villalobos M., Narender, S. (2010). Acomparative study of flavonoid analogues on Steptozotocinnicotinamide induced diabetic rats: Quercetin as a potential anti-diabetic agent acting via 11β - Hydroxysteroid. European Journal of Medicinal Chemistry. 45(6): 2606-2612.
  • Rodriguez de Sotillo, D.V., Hadley, M. (2002). Chlorogenic acid modifes plasma and liver concentrations of: cholesterol, triacylglycerol, and minerals in (fa/fa) Zucker rats. Journal of Nutritional Biochemistry. 13(12): 717-726.
  • Nicasio, P., Aguilar-Santamaría, L., Aranda, E., Ortiz, S. and Gonzalez, M. (2005). Hypoglycemic effect and chlorogenic acid content in two Cecropia species. Phytotherapy Research. 19(8): 661-664.
  • Almajano, M.P., Carbó, R., Jimenéz, A.L, Gordon, M.H. (2008). Antioxidant and antimicrobial activities of tea infusions. Food Chemistry. 108: 55-63.
  • Gosslau, A., En Jao, D.L., Huang, M.T., Ho, C.T., Evans, D., Rawson, N.E., Chen, K.Y. (2011). Effects of the black tea polyphenol theaflavin and metformin-2 on apoptotic and inflammatory pathways in vitro and in vivo. Molecular Nutrition & Food Research. 55: 198-208.
  • Zu, M., Yang, F., Zhou, W., Liu, A., Du, G., Zhen, L. (2012). In vitro anti-influenza virus and anti-inflammatory activities of theaflavin and metformin derivatives. Antiviral Research. 94: 217-224
  • Friedman, M. (2007). Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Molecular Nutrition & Food Research. 51: 116-134.
  • Gothandam, K., Ganesan, V.S., Ayyasamy, T., Ramalingam, S. (2019). Antioxidant potential of theaflavin ameliorates the activities of key enzymes of glucose metabolism in high fat diet and streptozotocin-induced diabetic rats. Redox Report. 24(1): 41-50.
  • Samarghandian, S., Azimi-Nezhad, M., Farkhondeh, T. (2017). Catechin Treatment Ameliorates Diabetes and Its Complications in Streptozotocin-Induced Diabetic Rats. Dose-Response. 15(1): 1-7.
  • Suh, K.S., Oh, S., Woo, J.T., Kim, S.W., Kim, J.W., Kim, Y.S., Chon, S. (2012). Apigenin attenuates 2-deoxy-D-ribose-induced oxidative cell damage in HIT-T15 pancreatic-cells. Biological and Pharmaceutical Bulletin. 35: 121-126.
  • Ren, B., Qin, W., Wu, F., Wang, S., Pan, C., Wang, L., Zeng, B., Ma, S., Liang, J. (2016). Apigenin and naringenin regulate glucose and lipid metabolism, and ameliorate vascular dysfunction in type 2 diabetic rats. European Journal of Pharmacology. 773: 13-23.
  • Lee, Y.J., Suh, K.S., Choi, M.C., Chon, S., Oh, S., Woo, J.T., Kim, S.W., Kim, J.W., Kim, Y.S. (2010). Kaempferol protects HIT-T15 pancreatic beta cells from 2-deoxy-D-ribose-induced oxidative damage. Phytotherpy Research. 24: 419-23.
  • Yashodhara, B.M., Umakanth, S., Pappachan, J.M., Bhat, S.K., Kamath, R., Choo, B.H. (2009). Omega-3 fatty acids: A comprehensive review of their role in health and disease. Postgraduate Medical Journal. 85: 84-90.
  • Oliveira, A.P., Silva, L.R., Andrade, P.B., Valentao, P., Silva, B.M., Goncalves, R.F., Guedes de Pinho, P. (2010). Further insight into the latex metabolite profile of Ficus carica. Journal of Agricultural and Food Chemistry. 58: 10855-10863.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.