82
Views
0
CrossRef citations to date
0
Altmetric
Review

A Review on the Antidiabetic and Anticancer Activities of Conus Venom Peptides

, , &
Pages 413-441 | Received 16 Mar 2021, Accepted 15 Jun 2021, Published online: 06 Dec 2021

References

  • Sarhan, M., Abdel-Wahab, M., Aly, H. and Fouda, M. (2021). DNA barcoding of seven cone snail species from Red Sea coast of Egypt. The Egyptian Journal of Aquatic Research. 47(1): 93-99
  • Schulz, J.R., Jan, I., Sangha, G. and Azizi, E. (2019). The high speed radular prey strike of a fish-hunting cone snail. Current Biology. 29(16): 788-789.
  • Turner, A., Kaas, Q. and Craik, D.J. (2020). Hormone-like conopeptides-new tools for pharmaceutical design. RSC Medicinal Chemistry. 11(11): 1235-1251.
  • Schroeder, C.I. and Craik, D.J. (2012). Therapeutic potential of conopeptides. Future Medicinal Chemistry. 4(10): 1243-1255.
  • Sudewi, A.A.R., Susilawathi, N.M., Mahardika, B.K., Mahendra, A.N., Pharmawati, M., Phuong, M.A. and Mahardika, G.N. (2019). Selecting Potential Neuronal Drug Leads from Conotoxins of Various Venomous Marine Cone Snails in Bali, Indonesia. ACS Omega. 4(21): 19483-19490.
  • Dhiman, V. and Pant, D. (2020). Human health and snails. Journal of Immunoassay and Immunochemistry. 1-25.
  • Dhiman, V. and Pant, D. (2021). Environmental Biomonitoring by Snails. Biomarkers. 1-59.
  • Durek, T. and Craik, D.J. (2015). Therapeutic conotoxins: A US patent literature survey. Expert Opinion on Therapeutic Patents. 25(10): 1159-1173.
  • Li, X., Tae, H.-S., Chu, Y., Jiang, T., Adams, D.J. and Yu, R. (2020). Medicinal chemistry, pharmacology, and therapeutic potential of α-conotoxins antagonizing the α9α10 nicotinic acetylcholine receptor. Pharmacology & Therapeutics. 107792.
  • Olivera, B.M. (2021). A Serendipitous Path to Pharmacology. Annual Review of Pharmacology and Toxicology. 61: 9-23.
  • Qiang, Y.-Y., Wu, Y., Zhao, D., Zhao, B., Wang, F., Ren, S., Wen, Y., Gu, J., Zhang, L. and Liu, K. (2021). Discovery and Characterization of the Novel Conotoxin Lv1d from Conus lividus that Presents Analgesic Activity. Toxicon. 194: 70-78
  • Haszprunar, G., Beesley, P.L., Ross, G.J.B. and Wells, A. (1998). Superorder Cocculiniformia. Mollusca: the southern synthesis. Fauna of Australia. 5 (Part B): 644-653.
  • Zauner, S. and Zuschin, M. (2016). Diversity, habitats and size-frequency distribution of the gastropod genus Conus at Dahab in the Gulf of Aqaba, Northern Red Sea. Zoology in the Middle East. 62(2): 125-136.
  • Peters, H., O’Leary, B.C., Hawkins, J.P., Carpenter, K.E. and Roberts, C.M. (2013). Conus: first comprehensive conservation red list assessment of a marine gastropod mollusc genus. PloS One. 8(12): e83353.
  • Kohn, A.J. and Nybakken, J.W. (1975). Ecology of Conus on eastern Indian Ocean fringing reefs: diversity of species and resource utilization. Marine Biology. 29(3): 211-234.
  • Kohn, A.J. (1990). Tempo and mode of evolution in Conidae. Malacologia. 32(1): 55-67.
  • Gao, B., Peng, C., Yang, J., Yi, Y., Zhang, J. and Shi, Q. (2017). Cone snails: A big store of conotoxins for novel drug discovery. Toxins. 9(12): 397.
  • Palanisamy, S.K., Kumar, D. and Maheswari, U. (2015). A perspective on toxicology of Conus venom peptides. Asian Pacific Journal of Tropical Medicine. 8(5) :337-351.
  • Mansbach, R.A., Travers, T., McMahon, B.H., Fair, J.M. and Gnanakaran, S. (2019). Snails In Silico: A Review of Computational Studies on the Conopeptides. Marine Drugs. 17(3): 145.
  • Li, X., Chen, W., Zhangsun, D. and Luo, S. (2020). Diversity of Conopeptides and Their Precursor Genes of Conus Litteratus. Marine Drugs. 18(9): 464.
  • Grau, V., Richter, K., Hone, A.J. and McIntosh, J.M. (2019). Conopeptides [V11L;V16D] ArIB and RgIA4: Powerful Tools for the Identification of Novel Nicotinic Acetylcholine Receptors in Monocytes. Frontiers in Pharmacology. 9: 1499.
  • Xu, X., Liang, J., Zhang, Z., Jiang, T. and Yu, R. (2019). Blockade of Human α7 Nicotinic Acetylcholine Receptor by α-Conotoxin ImI Dendrimer: Insight from Computational Simulations. Marine Drugs. 17(5): 303.
  • Sheng, Z., Liang, Z., Geiger, J.H., Prorok, M. and Castellino, F.J. (2009). The selectivity of conantokin-G for ion channel inhibition of NR2B subunit-containing NMDA receptors is regulated by amino acid residues in the S2 region of NR2B. Neuropharmacology. 57(2): 127–136.
  • Valente, P., Kiryushko, D., Sacchetti, S., Machado, P., Cobley, C.M., Mangini, V., Porter, A.E., Spatz, J.P., Fleck, R.A., Benfenati, F. and Fiammengo, R. (2020). Conopeptide-Functionalized Nanoparticles Selectively Antagonize Extrasynaptic N-Methyl-d-aspartate Receptors and Protect Hippocampal Neurons from Excitotoxicity In Vitro. ACS Nano. 14(6): 6866-6877.
  • Teichert, R.W., Jimenez, E.C. and Olivera, B.M. (2009). Biology and pharmacology of conotoxins. Botulinum Toxin: Therapeutic Clinical Practice and Science. Philadelphia: Saunders-Elsevier Science Inc: 446-464.
  • Mander, L. and Liu, H. (2010). Comprehensive natural products II: chemistry and biology. Elsevier.
  • White, H.S., McCabe, R.T., Armstrong, H., Donevan, S.D., Cruz, L.J., Abogadie, F.C., Torres, J., Rivier, J.E., Paarmann, I., Hollmann, M. and Olivera, B.M. (2000). In Vitro and In Vivo Characterization of Conantokin-R, a Selective Nmda Receptor Antagonist Isolated from the Venom of the Fish-Hunting Snail. Journal of Pharmacology and Experimental Therapeutics. 292(1): 425-432.
  • England, L.J., Imperial, J., Jacobsen, R., Craig, A.G., Gulyas, J., Akhtar, M., Rivier, J., Julius, D. and Olivera, B.M. (1998). Inactivation of a Serotonin-Gated Ion Channel by a Polypeptide Toxin from Marine Snails. Science. 281(5376): 575-578.
  • Fainzilber, M., Kofman, O., Zlotkin, E. and Gordon, D. (1994). A new neurotoxin receptor site on sodium channels is identified by a conotoxin that affects sodium channel inactivation in molluscs and acts as an antagonist in rat brain. Journal of Biological Chemistry. 269(4): 2574–2580.
  • Loughnan, M., Nicke, A., Jones, A., Schroeder, C.I., Nevin, S.T., Adams, D.J., Alewood, P.F. and Lewis, R.J. (2006). Identification of a novel class of nicotinic receptor antagonists: dimeric conotoxins VxXIIA, VxXIIB, and VxXIIC from Conus vexillum. Journal of Biological Chemistry. 281(34): 24745-24755.
  • Lebbe, E.K.M., Peigneur, S., Wijesekara, I. and Tytgat, J. (2014). Conotoxins targeting nicotinic acetylcholine receptors: an overview. Marine Drugs. 12(5): 2970-3004.
  • Ellison, M., Feng, Z.-P., Park, A.J., Zhang, X., Olivera, B.M., McIntosh, J.M. and Norton, R.S. (2008). Alpha-RgIA, a novel conotoxin that blocks the alpha9alpha10 nAChR: structure and identification of key receptor-binding residues. Journal of Molecular Biology. 377(4): 1216-1227.
  • Mahdavi, S. and Kuyucak, S. (2014). Molecular Dynamics Study of Binding of µ-Conotoxin GIIIA to the Voltage-Gated Sodium Channel Nav1.4. PLoS One. 9(8): e105300.
  • de Lera Ruiz, M. and Kraus, R.L. (2015). Voltage-Gated Sodium Channels: Structure, Function, Pharmacology, and Clinical Indications. Journal of Medicinal Chemistry. 58(18): 7093-7118.
  • Finol-Urdaneta, R.K., Belovanovic, A., Micic-Vicovac, M., Kinsella, G.K., McArthur, J.R. and Al-Sabi, A. (2020). Marine Toxins Targeting Kv1 Channels: Pharmacological Tools and Therapeutic Scaffolds. Marine Drugs. 18(3): 173.
  • Snutch, T.P. (2005). Targeting chronic and neuropathic pain: the N-type calcium channel comes of age. NeuroRx : the Journal of the American Society for Experimental NeuroTherapeutics. 2(4): 662-670.
  • Bourinet, E. and Zamponi, G.W. (2017). Block of voltage-gated calcium channels by peptide toxins. Neuropharmacology. 127: 109-115.
  • Jin, A.H., Muttenthaler, M., Dutertre, S., Himaya, S.W.A., Kaas, Q., Craik, D.J., Lewis, R.J. and Alewood, P.F. (2019). Conotoxins: Chemistry and Biology. Chemical Reviews. 119 (21): 11510-11549.
  • Craik, D.J. and Adams, D.J. (2007). Chemical Modification of Conotoxins to Improve Stability and Activity. ACS Chemical Biology. 2(7): 457-468.
  • Safronova, V.G., Vulfius, C.A., Astashev, M.E., Tikhonova, I.V, Serov, D.A., Jirova, E.A., Pershina, E.V, Senko, D.A., Zhmak, M.N. and Kasheverov, I.E. (2021). α9α10 nicotinic acetylcholine receptors regulate murine bone marrow granulocyte functions. Immunobiology. 226(1): 152047.
  • Abraham, N. and Lewis, R.J. (2018). Neuronal Nicotinic Acetylcholine Receptor Modulators from Cone Snails. Marine Drugs. 16(6): 208.
  • Patel, R., Montagut-Bordas, C. and Dickenson, A.H. (2018). Calcium channel modulation as a target in chronic pain control. British Journal of Pharmacology. 175(12): 2173-2184.
  • Blazon, M., LaCarubba, B., Bunda, A., Czepiel, N., Mallat, S., Londrigan, L. and Andrade, A. (2021). N-type calcium channels control GABAergic transmission in brain areas related to fear and anxiety. OBM Neurobiology. 5(1).
  • McGivern, J.G. (2007). Ziconotide: a review of its pharmacology and use in the treatment of pain. Neuropsychiatric Disease and Treatment. 3(1): 69-85.
  • Thany, S.H. and Tricoire-Leignel, H. (2011). Emerging pharmacological properties of cholinergic synaptic transmission: Comparison between mammalian and insect synaptic and extrasynaptic nicotinic receptors. Current Neuropharmacology. 9 (4): 706-714.
  • Saravanan, R., Sambasivam, S., Shanmugam, A., Kumar, D.S., Vanan, T. and Nazeer, R.A. (2009). Isolation, purification and biochemical characterization of conotoxin from Conus figulinus Linnaeus (1758). Indian Journal of Biotectnology. 8(3): 266-271.
  • Wang, L., Liu, J., Pi, C., Zeng, X., Zhou, M., Jiang, X., Chen, S., Ren, Z. and Xu, A. (2009). Identification of a novel M-superfamily conotoxin with the ability to enhance tetrodotoxin sensitive sodium currents. Archives of Toxicology. 83(10): 925-932.
  • Xian-Dong, D.A.I., Chong-Xu, F.A.N., Ying, C.A.O., Jiang, H., Shang-Yi, L.I.U. and Ji-Sheng, C. (2010). Isolation and Characterization of Conotoxin bt5a from Conus betulinus. Chinese Journal of Natural Medicines. 8(2): 132-136.
  • Kumar, P.S., Kumar, D.S. and Umamaheswari, S. (2015). A perspective on toxicology of Conus venom peptides. Asian Pacific Journal of Tropical Medicine. 8(5): 337-351.
  • Robinson, S.D., Undheim, E.A.B., Ueberheide, B. and King, G.F. (2017). Venom peptides as therapeutics: advances, challenges and the future of venom-peptide discovery. Expert Review of Proteomics. 14(10): 931-939.
  • Elliger, C.A., Richmond, T.A., Lebaric, Z.N., Pierce, N.T., Sweedler, J.V. and Gilly, W.F. (2011). Diversity of conotoxin types from Conus californicus reflects a diversity of prey types and a novel evolutionary history. Toxicon. 57(2): 311-322.
  • Vetter, I., Dekan, Z., Knapp, O., Adams, D.J., Alewood, P.F. and Lewis, R.J. (2012). Isolation, characterization and total regioselective synthesis of the novel μO-conotoxin MfVIA from Conus magnificus that targets voltage-gated sodium channels. Biochemical Pharmacology. 84(4): 540-548.
  • Inserra, M.C., Kompella, S.N., Vetter, I., Brust, A., Daly, N.L., Cuny, H., Craik, D.J., Alewood, P.F., Adams, D.J. and Lewis, R.J. (2013). Isolation and characterization of α-conotoxin LsIA with potent activity at nicotinic acetylcholine receptors. Biochemical Pharmacology. 86(6): 791-799.
  • Balaji, R.A., Ohtake, A., Sato, K., Gopalakrishnakone, P., Kini, R.M., Seow, K.T. and Bay, B.-H. (2000). λ-conotoxins, a new family of conotoxins with unique disulfide pattern and protein folding: Isolation and characterization from the venom of Conus marmoreus. Journal of Biological Chemistry. 275(50): 39516-39522.
  • Favreau, P., Gilles, N., Lamthanh, H., Bournaud, R., Shimahara, T., Bouet, F., Laboute, P., Letourneux, Y., Ménez, A. and Molgó, J. (2001). A new ω-conotoxin that targets N-type voltage-sensitive calcium channels with unusual specificity. Biochemistry. 40(48): 14567–14575.
  • McIntosh, J.M., Dowell, C., Watkins, M., Garrett, J.E., Yoshikami, D. and Olivera, B.M. (2002). α-Conotoxin GIC from Conus geographus, a novel peptide antagonist of nicotinic acetylcholine receptors. Journal of Biological Chemistry. 277(37): 33610-33615.
  • Milne, T.J., Abbenante, G., Tyndall, J.D.A., Halliday, J. and Lewis, R.J. (2003). Isolation and characterization of a cone snail protease with homology to CRISP proteins of the pathogenesis-related protein superfamily. Journal of Biological Chemistry. 278(33): 31105-31110.
  • Loughnan, M.L., Nicke, A., Jones, A., Adams, D.J., Alewood, P.F. and Lewis, R.J. (2004). Chemical and functional identification and characterization of novel sulfated α-conotoxins from the cone snail Conus anemone. Journal of Medicinal Chemistry. 47(5): 1234-1241.
  • Bulaj, G., West, P.J., Garrett, J.E., Watkins, M., Zhang, M.-M., Norton, R.S., Smith, B.J., Yoshikami, D. and Olivera, B.M. (2005). Novel conotoxins from Conus striatus and Conus kinoshitai selectively block TTX-resistant sodium channels. Biochemistry. 44(19): 7259-7265.
  • Aguilar, M.B., López-Vera, E., Ortiz, E., Becerril, B., Possani, L.D., Olivera, B.M. and Heimer de la Cotera, E.P. (2005). A novel conotoxin from Conus delessertii with post-translationally modified lysine residues. Biochemistry. 44(33): 11130-11136.
  • Jiang, H., Wang, C.-Z., Xu, C.-Q., Fan, C.-X., Dai, X.-D., Chen, J.-S. and Chi, C.-W. (2006). A novel M-superfamily conotoxin with a unique motif from Conus vexillum. Peptides. 27(4): 682-689.
  • Lewis, R.J., Schroeder, C.I., Ekberg, J., Nielsen, K.J., Loughnan, M., Thomas, L., Adams, D.A., Drinkwater, R., Adams, D.J. and Alewood, P.F. (2007). Isolation and structure-activity of μ-conotoxin TIIIA, a potent inhibitor of tetrodotoxin-sensitive voltage-gated sodium channels. Molecular Pharmacology. 71(3): 676-685.
  • Wang, L., Pi, C., Liu, J., Chen, S., Peng, C., Sun, D., Zhou, M., Xiang, H., Ren, Z. and Xu, A. (2008). Identification and characterization of a novel O-superfamily conotoxin from Conus litteratus. Journal of Peptide Science: An Official Publication of the European Peptide Society. 14(10): 1077-1083.
  • Möller, C. and Marí, F. (2011). 9.3 KDa components of the injected venom of Conus purpurascens define a new five-disulfide conotoxin framework. Peptide Science. 96(2): 158–165.
  • Wang, S., Du, T., Liu, Z., Wang, S., Wu, Y., Ding, J., Jiang, L. and Dai, Q. (2014). Characterization of a T-superfamily conotoxin TxVC from Conus textile that selectively targets neuronal nAChR subtypes. Biochemical and Biophysical Research Communications. 454(1): 151-156.
  • Jin, A.-H., Israel, M.R., Inserra, M.C., Smith, J.J., Lewis, R.J., Alewood, P.F., Vetter, I. and Dutertre, S. (2015). δ-Conotoxin SuVIA suggests an evolutionary link between ancestral predator defence and the origin of fish-hunting behaviour in carnivorous cone snails. Proceedings of the Royal Society B: Biological Sciences. 282(1811): 20150817.
  • Bernáldez, J., Jiménez, S., González, L.J., Ferro, J.N., Soto, E., Salceda, E., Chávez, D., Aguilar, M.B. and Licea-Navarro, A. (2016). A new member of gamma-conotoxin family isolated from Conus princeps displays a novel molecular target. Toxins. 8(2): 39.
  • Echterbille, J., Gilles, N., Araóz, R., Mourier, G., Amar, M., Servent, D., De Pauw, E. and Quinton, L. (2017). Discovery and characterization of EIIB, a new α-conotoxin from Conus ermineus venom by nAChRs affinity capture monitored by MALDI-TOF/TOF mass spectrometry. Toxicon. 130: 1-10.
  • Sousa, S.R., McArthur, J.R., Brust, A., Bhola, R.F., Rosengren, K.J., Ragnarsson, L., Dutertre, S., Alewood, P.F., Christie, M.J. and Adams, D.J. (2018). Novel analgesic ω-conotoxins from the vermivorous cone snail Conus moncuri provide new insights into the evolution of conopeptides. Scientific Reports. 8(1): 1-15.
  • Neves, J.L.B., Imperial, J.S., Morgenstern, D., Ueberheide, B., Gajewiak, J., Antunes, A., Robinson, S.D., Espino, S., Watkins, M. and Vasconcelos, V. (2019). Characterization of the First Conotoxin from Conus ateralbus, a Vermivorous Cone Snail from the Cabo Verde Archipelago. Marine Drugs. 17(8): 432.
  • Wang, D., Himaya, S.W.A., Giacomotto, J., Hasan, M., Cardoso, F.C., Ragnarsson, L. and Lewis, R.J. (2020). Characterisation of d-Conotoxin TxVIA as a Mammalian T-Type Calcium Channel Modulator. Marine Drugs. 18(7): 343.
  • Armstrong, D.A., Jin, A.-H., Braga Emidio, N., Lewis, R.J., Alewood, P.F. and Rosengren, K.J. (2021). Chemical Synthesis and NMR Solution Structure of Conotoxin GXIA from Conus geographus. Marine Drugs. 19(2): 60.
  • Cai, F., Xu, N., Liu, Z., Ding, R., Yu, S., Dong, M., Wang, S., Shen, J., Tae, H.-S. and Adams, D.J. (2018). Targeting of N-type calcium channels via GABAB-receptor activation by α-conotoxin Vc1. 1 variants displaying improved analgesic activity. Journal of Medicinal Chemistry. 61(22): 10198-10205.
  • Bjørn-Yoshimoto, W.E., Ramiro, I.B.L., Yandell, M., McIntosh, J.M., Olivera, B.M., Ellgaard, L. and Safavi-Hemami, H. (2020). Curses or Cures: A Review of the Numerous Benefits Versus the Biosecurity Concerns of Conotoxin Research. Biomedicines. 8(8): 235.
  • Boot, J.R. (1994). Differential effects of ω-conotoxin GVIA and MVIIC on nerve stimulation inducedcontractionsofguinea-pigileumandratvasdeferens. European Journalof Pharmacology. 258(1-2): 155-158.
  • Hong, S.J. and Chang, C.C. (1995). Calcium channel subtypes for the sympathetic and parasympathetic nerves of guinea-pig atria. British Journal of Pharmacology. 116(1): 1577-1582.
  • Vega, T., De Pascual, R., Bulbena, O. and García, A.G. (1995). Effects of ω-toxins on noradrenergic neurotransmission in beating guinea pig atria. European Journal of Pharmacology. 276(3): 231-238.
  • Vremec, M.A., Bornstein, J.C., Wright, C.E. and Humphrey, A. (1997). Differential effects of ω-conotoxin GVIA on cholinergic and non-cholinergic secretomotor neurones in the guinea-pig small intestine. British Journal of Pharmacology. 121(2): 232-236.
  • Hama, A. and Sagen, J. (2009).Antinociceptive effects ofthemarinesnailpeptidesconantokin-G and conotoxin MVIIA alone and in combination in rat models of pain. Neuropharmacology. 56 (2): 556-563.
  • Scott, D.A., Wright, C.E. and Angus, J.A. (2002). Actions of intrathecal ω-conotoxins CVID, GVIA, MVIIA, and morphine in acute and neuropathic pain in the rat. European Journal of Pharmacology. 451(3): 279-286.
  • Mazeh, A.C., Angus, J.A. and Wright, C.E. (2019). The effects of varying Mg2+ ion concentrations on contractions to the cotransmitters ATP and noradrenaline in the rat vas deferens. Autonomic Neuroscience. 222: 102588.
  • Kulak, J.M., Nguyen, T.A., Olivera, B.M. and McIntosh, J.M. (1997). α-Conotoxin MII blocks nicotine-stimulated dopamine release in rat striatal synaptosomes. Journal of Neuroscience. 17(14): 5263-5270.
  • Jayamanne, A., Jeong, H.J., Schroeder, C.I., Lewis, R.J., Christie, M.J. and Vaughan, C.W. (2013). Spinal actions of ω-conotoxins, CVID, MVIIA and related peptides in a rat neuropathic pain model. British Journal of Pharmacology. 170(2): 245-254.
  • Li, X., Hu, Y., Wu, Y., Huang, Y., Yu, S., Ding, Q., Zhangsun, D. and Luo, S. (2016). Anti-hypersensitive effect of intramuscular administration of αO-conotoxin GeXIVA [1, 2] and GeXIVA [1, 4] in rats of neuropathic pain. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 66: 112-119.
  • Satkunanathan, N., Livett, B., Gayler, K., Sandall, D., Down, J. and Khalil, Z. (2005). Alpha-conotoxin Vc1. 1 alleviates neuropathic pain and accelerates functional recovery of injured neurones. Brain Research. 1059(2): 149-158.
  • Wang, C.-Z., Zhang, H., Jiang, H., Lu, W., Zhao, Z.-Q. and Chi, C.-W. (2006). A novel conotoxin from Conus striatus, μ-SIIIA, selectively blocking rat tetrodotoxin-resistant sodium channels. Toxicon. 47(1): 122-132.
  • Matthews, E.A. and Dickenson, A.H. (2001). Effects of spinally delivered N-and P-type voltage-dependent calcium channel antagonists on dorsal horn neuronal responses in a rat model of neuropathy. Pain. 92(1-2): 235-246.
  • Kaiser, S.A., Soliakov, L., Harvey, S.C., Luetje, C.W. and Wonnacott, S. (1998). Differential inhibition by α-conotoxin-MII of the nicotinic stimulation of [3H] dopamine release from rat striatal synaptosomes and slices. Journal of Neurochemistry. 70(3): 1069-1076.
  • Huynh, P.N., Giuvelis, D., Christensen, S., Tucker, K.L. and McIntosh, J.M. (2020). RgIA4 Accelerates recovery from paclitaxel-induced neuropathic pain in rats. Marine Drugs. 18(1): 12.
  • Kim, H.J., La, J., Kim, H.M., Yang, I. and Sung, T.S. (2019). Anti-diarrheal effect of Scutellaria baicalensis is associated with suppression of smooth muscle in the rat colon. Experimental and Therapeutic Medicine. 17(6): 4748-4756.
  • Bozorgi, H., Motaghi, E., Zamani, M. and Ghavimi, R. (2018). Neuronal calcium channels blocker, ziconotide (ɷ-conotoxin MVIIA), reverses morphine withdrawal-induced memory impairments via alteration in hippocampal NMDA receptor expression in rats. Toxin Reviews. 39(4): 323-332.
  • Deuis, J.R., Wingerd, J.S., Winter, Z., Durek, T., Dekan, Z., Sousa, S.R., Zimmermann, K., Hoffmann, T., Weidner, C. and Nassar, M.A. (2016). Analgesic effects of GpTx-1, PF-04856264 and CNV1014802 in a mouse model of NaV1. 7-mediated pain. Toxins. 8(3): 78.
  • Hoggard, M.F., Rodriguez, A.M., Cano, H., Clark, E., Adams, D.J., Godenschwege, T.A. and Marí, F. (2017). In vivo and in vitro testing of native α-conotoxins from the injected venom of Conus purpurascens. Neuropharmacology. 127: 253-259.
  • Wright, C.E., Robertson, A.D., Whorlow, S.L. and Angus, J.A. (2000). Cardiovascular and autonomic effects of ω-conotoxins MVIIA and CVID in conscious rabbits and isolated tissue assays. British Journal of Pharmacology. 131(7): 1325-1336.
  • McDonough, S.I., Swartz, K.J., Mintz, I.M., Boland, L.M. and Bean, B.P. (1996). Inhibition of calcium channels in rat central and peripheral neurons by omega-conotoxin MVIIC. Journal of Neuroscience. 16(8): 2612-2623.
  • Qian, J., Liu, Y., Sun, Z., Zhangsun, D. and Luo, S. (2019). Identification of nicotinic acetylcholine receptor subunits in different lung cancer cell lines and the inhibitory effect of alpha-conotoxin TxID on lung cancer cell growth. European Journal of Pharmacology. 865: 172674.
  • Kumari, A., Ameri, S., Ravikrishna, P., Dhayalan, A., Kamala-Kannan, S., Selvankumar, T. and Govarthanan, M. (2019). Isolation and characterization of conotoxin protein from Conus inscriptus and its potential anticancer activity against cervical cancer (HeLa-HPV 16 associated) cell lines. International Journal of Peptide Research and Therapeutics. 1-9.
  • Castro, J., Harrington, A.M., Garcia-Caraballo, S., Maddern, J., Grundy, L., Zhang, J., Page, G., Miller, P.E., Craik, D.J. and Adams, D.J. (2017). α-Conotoxin Vc1. 1 inhibits human dorsal root ganglion neuroexcitability and mouse colonic nociception via GABAB receptors. Gut. 66(6): 1083-1094.
  • Sher, E., Pandiella, A. and Clementi, F. (1988). ω-Conotoxin binding and effects on calcium channel function in human neuroblastoma and rat pheochromocytoma cell lines. FEBS letters. 235(1-2): 178-182.
  • Liu, Y., Qian, J., Sun, Z., Zhangsun, D. and Luo, S. (2019). Cervical cancer correlates with the differential expression of nicotinic acetylcholine receptors and reveals therapeutic targets. Marine Drugs. 17(5): 256.
  • Abraham, N., Healy, M., Ragnarsson, L., Brust, A., Alewood, P.F. and Lewis, R.J. (2017). Structural mechanisms for α-conotoxin activity at the human α3β4 nicotinic acetylcholine receptor. Scientific Reports. 7(1): 1-12.
  • Wu, T.D. (2021). Diabetes, insulin resistance, and asthma: a review of potential links. Current Opinion in Pulmonary Medicine. 27(1).
  • Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A.A. and Ogurtsova, K. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Research and Clinical Practice. 157: 107843.
  • Skyler, J.S., Bakris, G.L., Bonifacio, E., Darsow, T., Eckel, R.H., Groop, L., Groop, P.- H., Handelsman, Y., Insel, R.A. and Mathieu, C. (2017). Differentiation of diabetes by pathophysiology, natural history, and prognosis. Diabetes. 66(2): 241-255.
  • Vargas, E., Joy, N. V. and Sepulveda, M.A.C. (2020). Biochemistry, Insulin Metabolic Effects. StatPearls [Internet].
  • Mann, E., Sunni, M. and Bellin, M.D. (2020). Secretion of insulin in response to diet and hormones. Pancreapedia: The Exocrine Pancreas Knowledge Base.
  • Donner, T. and Sarkar, S. (2000). Insulin - Pharmacology, Therapeutic Regimens, and Principles of Intensive Insulin Therapy. Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circles, Baltimore, MD 21224: MDText.com. Inc., South Dartmouth (MA).
  • Organization, W.H. (2006). Guidelines for the prevention, management and care of diabetes mellitus.
  • Evert, A.B., Dennison, M., Gardner, C.D., Garvey, W.T., Lau, K.H.K., MacLeod, J., Mitri, J., Pereira, R.F., Rawlings, K. and Robinson, S. (2019). Nutrition therapy for adults with diabetes or prediabetes: a consensus report. Diabetes Care. 42(5): 731-754.
  • Zeng, Z., Huang, S.-Y. and Sun, T. (2020). Pharmacogenomic studies of current antidiabetic agents and potential new drug targets for precision medicine of diabetes. Diabetes Therapy. 1-18.
  • Weiss, M., Steiner, D.F. and Philipson, L.H. (2000). Insulin Biosynthesis, Secretion, Structure, and Structure-Activity Relationships. MDText.com. Inc., South Dartmouth (MA).
  • Safavi-Hemami, H., Gajewiak, J., Karanth, S., Robinson, S.D., Ueberheide, B., Douglass, A.D., Schlegel, A., Imperial, J.S., Watkins, M. and Bandyopadhyay, P.K. (2015). Specialized insulin is used for chemical warfare by fish-hunting cone snails. Proceedings of the National Academy of Sciences. 112(6): 1743-1748.
  • Ahorukomeye, P., Disotuar, M.M., Gajewiak, J., Karanth, S., Watkins, M., Robinson, S.D., Salcedo, P.F., Smith, N.A., Smith, B.J. and Schlegel, A. (2019). Fish-hunting cone snail venoms are a rich source of minimized ligands of the vertebrate insulin receptor. Elife. 8: e41574.
  • Xiong, X., Menting, J.G., Disotuar, M.M., Smith, N.A., Delaine, C.A., Ghabash, G., Agrawal, R., Wang, X., He, X., Fisher, S.J., MacRaild, C.A., Norton, R.S., Gajewiak, J., Forbes, B.E., Smith, B.J., Safavi-Hemami, H., Olivera, B., Lawrence, M.C. and Chou, D.H.-C. (2020). A structurally minimized yet fully active insulin based on cone-snail venom insulin principles. Nature Structural & Molecular Biology. 27(7): 615-624.
  • Cantley, J. and Ashcroft, F.M. (2015). Q&A: insulin secretion and type 2 diabetes: why do β-cells fail? BMC Biology. 13(1): 33.
  • Berger, C. and Zdzieblo, D. (2020). Glucose transporters in pancreatic islets. Pflugers Archiv : European Journal of Physiology. 472(9): 1249-1272.
  • Gupta, D., Radhakrishnan, M. and Kurhe, Y. (2014). Insulin reverses anxiety-like behavior evoked by streptozotocin-induced diabetes in mice. Metabolic Brain Disease. 29(3): 737-746.
  • Swedberg, J.E., Schroeder, C.I., Mitchell, J.M., Fairlie, D.P., Edmonds, D.J., Griffith, D.A., Ruggeri, R.B., Derksen, D.R., Loria, P.M. and Price, D.A. (2016). Truncated glucagon-like peptide-1 and exendin-4 α-conotoxin pl14a peptide chimeras maintain potency and α-helicity and reveal interactions vital for cAMP signaling in vitro. Journal of Biological Chemistry. 291 (30): 15778-15787.
  • Aaghaz, S., Gohel, V. and Kamal, A. (2019). Peptides as potential anticancer agents. Current Topics in Medicinal Chemistry. 19(17): 1491-1511.
  • Abdel-Wahab, M., Miyashita, M., Ota, Y., Juichi, H., Okabe, R., Sarhan, M., Fouda, M., Abdel-Rahman, M., Saber, S. and Nakagawa, Y. (2017). Isolation, structural identification and biological characterization of two conopeptides from the Conus pennaceus venom. Bioscience, Biotechnology, and Biochemistry. 81(11): 2086-2089.
  • Himaya, S.W.A. and Lewis, R.J. (2018). Venomics-Accelerated Cone Snail Venom Peptide Discovery. International Journal of Molecular Sciences. 19(3): 788.
  • Anand, P., Filipenko, P., Huaman, J., Lyudmer, M., Hossain, M., Santamaria, C., Huang, K., Ogunwobi, O.O. and Holford, M. (2019). Antitumor effects of Tv1 venom peptide in liver cancer. BioRxiv. 518340.
  • Sun, Z., Bao, J., Zhangsun, M., Dong, S., Zhangsun, D. and Luo, S. (2020). αO-Conotoxin GeXIVA Inhibits the Growth of Breast Cancer Cells via Interaction with α9 Nicotine Acetylcholine Receptors. Marine Drugs.
  • Suarez-Jimenez, G.-M., Burgos-Hernandez, A. and Ezquerra-Brauer, J.-M. (2012). Bioactive Peptides and Depsipeptides with Anticancer Potential: Sources from Marine Animals. Marine Drugs. 10(5): 963-86.
  • Mei, D., Zhao, L., Chen, B., Zhang, X., Wang, X., Yu, Z., Ni, X. and Zhang, Q. (2018). α-Conotoxin ImI-modified polymeric micelles as potential nanocarriers for targeted docetaxel delivery to α7-nAChR overexpressed non-small cell lung cancer. Drug Delivery. 25(1): 493–503.
  • Salimi, A., Rahimitabar, N., Vazirizadeh, A., Adhami, V. and Pourahmad, J. (2020). Persian Gulf Snail Crude Venom (Conus textile): A Potential Source of Anti-Cancer Therapeutic Agents for Glioblastoma through Mitochondrial-Mediated Apoptosis. Asian Pacific Journal of Cancer Prevention. 21(S2): 49-57.
  • Kumari, A., Ameri, S., Marraiki, N., Elgorban, A.M., Aroulmoji, V., Ponnuchamy, K., Govarthanan, M. and Selvankumar, T. (2021). Isolation, Characterization and In-Silico Study of Conotoxin Protein from Conus loroisii and Its Anti-cancer Activity. International Journal of Peptide Research and Therapeutics. 385-391.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.