46
Views
0
CrossRef citations to date
0
Altmetric
Review

Cytotoxic Phytochemicals from Myrsinaceae Family and their Modes of Action: A Review

, ORCID Icon &
Pages 298-324 | Received 18 Aug 2020, Accepted 15 Jun 2021, Published online: 16 Aug 2021

References

  • Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. Ca. Cancer J. Clin. 0:1-41.
  • Cragg, G.M., Pezzuto, J.M. (2016). Natural Products as a Vital Source for the Discovery of Cancer Chemotherapeutic and Chemopreventive Agents. Med. Princ. Pract. 25(suppl 2): 41-59. doi: 10.1159/000443404
  • Chen, C., Pipoly, J.J. (1996). Myrsinaceae. In: Wu, Z., Raven, P.H. (Eds.), Flora of China. Science Press, Beijing and Missouri Botanical Garden Press, St. Louis. 1-38.
  • Kobayashi, H., de Mejia, E. (2005). The genus Ardisia: a novel source of health-promoting compounds and phytopharmaceuticals. J. Ethnopharmacol. 96: 347-354. doi: 10.1016/j.jep.2004.09.037
  • Raffauf, R.F. (1996). Plant Alkaloids. A Guide to Their Discovery and Distribution. Food Products Press, Binghampton, NY. 147-148.
  • Sumino, M., Sekine, T., Ruangringsi, N., Iragashi, K., Ikegami, F. (2002). Ardisiphenols and other antioxidant principles from the fruits of Ardisia colorata. Chem. Pharm. Bull. 50: 1484-1487. doi: 10.1248/cpb.50.1484
  • Zhu, G.Y., Wong, B.C.K., Lu, A., Bian, Z.X., Zhang, G., Chen, H.B., Wong, Y.F., Fong, W.F., Yang, Z. (2012). Alkylphenols from the roots of Ardisia brevicaulis induce G1 arrest and apoptosis through endoplasmic reticulum stress pathway in human non-small cell lung cancer cells. Chem. Pharm. Bull. 60: 1029-1036. doi: 10.1248/cpb.c12-00302
  • Chang, H.S., Lin, Y.J., Lee, S.J., Yang, C.W., Lin, W.Y., Tsai, I.L., Chen, I.S. (2009). Cytotoxic alkyl benzo quinones and alkyl phenols from Ardisia virens. Phytochemistry. 70: 2064-2071. doi: 10.1016/j.phytochem.2009.09.006
  • Liu, H., Zhao, F., Yang, R., Wang, M., Zheng, M., Zhao, Y., Zhang, X., Qiu F., Wang, H. (2009). Dimeric 1,4-benzoquinone derivatives and a resorcinol derivative from Ardisia gigantifolia. Phytochemistry. 70: 773-778. doi: 10.1016/j.phytochem.2009.04.004
  • Al-Mekhlafi, N.A., Shaari, K., Abas, F., Kneer, R., Jeyaraj, E.J., Stanslas, J., Yamamoto, N., Honda, T., Lajis, N.H. (2012). Alkenylresorcinols and cytotoxic activity of the constituents isolated from Labisia pumila. Phytochemistry. 80: 42-49. doi: 10.1016/j.phytochem.2012.04.008
  • Ndontsa, B.L., Dongmo, F.L.M., Tala, M.F., Wabo, H.K., Zeng, G.Z., Tan, N.H., Tane, P. (2013). A new cytotoxic alkenylresorcinol from Embelia schimperi. Rec. Nat. Prod. 8: 37-40
  • Jamia, A.J., Houghton, P.J. (1999) Alkenylresorcinols from Labisia pumila var. alata. Proceedings of Natural products research in Malaysia. Pulau Pinang: Universiti Sains Malaysia, 45-46.
  • Yang, Z., Wen, P., Wang, N.L., Yao, X.S. (2008). Two new phenolic compounds from Ardisia gigantifolia. Chin. Chem. Lett. 19: 693-695. doi: 10.1016/j.cclet.2008.04.002
  • Chen, J.P., Zhu, L.J., Su, X.X., Zhang, K.X., Zhang, X., Wang, J.H., Yao, X.S. (2018). New alkylresorcinols from the fruits of Embelia ribes. Fitoterapia. 128: 66-72 doi: 10.1016/j.fitote.2018.04.022
  • Ali, Z., Khan, I.A. (2011). Alkyl phenols and saponins from the roots of Labisia pumila (Kacip Fatimah). Phytochemistry. 72: 2075-2080. doi: 10.1016/j.phytochem.2011.06.014
  • Muhamad, M., Choo, C.Y., Hasuda, T., Hitotsuyanagi, Y. (2019). Estrogenic phytochemical from Labisia pumila (Myrsinaceae) with selectivity towards estrogen receptor alpha and beta subtypes. Fitoterapia. 127: 1-4
  • Ning-Ning, S., Lei-Min, Y., Min-Jie, Z., Ren-Feng, A., Wei, L., Xue-Feng, H. (2021). Triterpenoid saponins and phenylpropanoid glycoside from the roots of Ardisia crenata and their cytotoxic activities. Chin. J. Nat. Med. 19: 63-69
  • Tian, Z., Chang, M.N., Sandrino, M., Huang, L., Pan, J.X., Arison, B., Smith, J., Lam, Y.K.T. (1987). Quinones from Ardisia cornudentata. Phytochemistry. 26: 2361-2362. doi: 10.1016/S0031-9422(00)84719-6
  • Wrobel-Biedrawa, D., Grabowska, K., Galanty, A., Sobolewska, D., Zmudzki, P., Podolok, I. (2020). Anti-melanoma potential of two benzoquinone homologues embelin and rapanone-a comparative in vitro study. Toxicol In Vitro. 65: 104826-104838 doi: 10.1016/j.tiv.2020.104826
  • Abourashed, E.A., El-Feraly, F.S., Khan, I.A., Hufford, C.D. (2000). 2-hydroxy-5-(ethanolamino)-3-(10’-Z-pentadecenyl) - 1, 4 - benzoquinone, new microbial phase II metabolite of maesanin. Chem. Pharm. Bull. 48: 45-47. doi: 10.1248/cpb.48.45
  • Yang, L.K., Beattie, C.K., Goh, K.L., Chng, B.L., Yoganathan, K., Lai, Y.H., Butler, M.S. (2001). Ardisiaquinones from Ardisia teysmanniana. Phytochemistry. 58: 1235-1238. doi: 10.1016/S0031-9422(01)00317-X
  • Ndontsa, B.L., Tatsimo, J.S.N., Csupor, D., Forgo, P., Berkecz, R., Berenyi, A., Tene, M., Molnar, J., Zupko, I., Hohmann, J., Tane, P. (2011). Alkylbenzoquinones with antiproliperative effect against human cancer cell lines from stem of Ardisia kivuensis. Phytochem. Lett. 4: 227-230. doi: 10.1016/j.phytol.2011.04.003
  • Ndontsa, B.L., Tala, M.F., Talontsi, F.M., Wabo, F.M., Tene, M., Laatsch, H., Tane, P. (2012). New cytotoxic alkylbenzoquinone derivatives from leaves and stem of Ardisia kivuensis. Phytochem. Lett. 5: 463-466. doi: 10.1016/j.phytol.2012.04.006
  • Zheng, Y., Deng, Y., Wu, F.E. (2004). Ardisinones A-E, Novel diarylundecanones from Ardisia arborescens. J. Nat. Prod. 67: 1617-1619. doi: 10.1021/np040041z
  • Avula, B., Wang, Y.H., Ali, Z., Smillie, T.J., Khan, I.A. (2011). Quantitative determination of triterpenoid saponins and alkenated-phenolics from Labisia pumila using an LC-UV/ELSD method and confirmation by LC-ESI-TOF. Planta Med. 77: 1742-1748. doi: 10.1055/s-0030-1271037
  • Jia, Z., Koike, K., Nikaido, T., Ohmoto, T., Ni, M. (1994b). Triterpenoid saponins from Ardisia crenata and their inhibitory activity on cAMP phosphodiesterase. Chem. Pharm. Bull. 42: 2309-2314. doi: 10.1248/cpb.42.2309
  • Liu, D.L., Zhang, X., Wang, S.P., Wang, N.L., Yao, X.S. (2011). A new triterpenoid saponin from the roots of Ardisia crenata. Chin. Chem. Lett. 22: 957-960. doi: 10.1016/j.cclet.2011.01.027
  • Huang, J., Ogihara, Y., Zhang, H., Shimizu, N., Takeda, T. (2000a). Triterpenoid saponins from Ardisia mamillata. Phytochemistry. 54: 817-822. doi: 10.1016/S0031-9422(00)00173-4
  • Chang, X., Li, W., Jia, Z., Satou, T., Fushiya, S., Koike, K. (2007). Biologically active triterpenoid saponins from Ardisia japonica. J. Nat. Prod. 70: 197-187. doi: 10.1021/np0604681
  • Li, Q., Li, W., Hui, L.P., Zhao, C.Y., He, L., Koike, K. (2012). 13,28-Epoxy triterpenoid saponins from Ardisia japonica selectively inhibit proliferation of liver cancer cells without affecting normal liver cells. Bioorg. Med. Chem. Lett. 22: 6120-6125. doi: 10.1016/j.bmcl.2012.08.027
  • Matsunami, K., Otsuka, H., Takeda, Y. (2011). Myrseguinosides A-E, five new glycosides from the fruits of Myrsine seguinii. Chem. Pharm. Bull. 59: 1274-1280. doi: 10.1248/cpb.59.1274
  • Mbaveng, A.T., Ndontsa, B.L., Kuete, V., Nguekeu, Y.M.M., Celik, I., Mbouangouere, R., Tane, P., Efferth, T. (2018). A naturally occurring triterpene saponin ardisiacrispin B displayed cytotoxic effects in multi-factorial drug resistant cancer cells via ferroptotic and apoptotic cell death. Phytomed. 43: 78-85. doi: 10.1016/j.phymed.2018.03.035
  • Tang, H.F., Lin, H.W., Chen, X.L., Cheng, G., Zhao, Y.P., Wen, A.D. (2009). Cytotoxic triterpenoid saponins from Ardisia pusilla. Chin. Chem. Lett. 20: 193-196. doi: 10.1016/j.cclet.2008.10.030
  • Huang, J., Ogihara, Y., Zhang, H., Shimizu, N., Takeda, T. (2000b). Ardisimamillosides C-F, four new triterpenoid saponins from Ardisia mamillata. Chem. Pharm. Bull. 48: 1413-1417. doi: 10.1248/cpb.48.1413
  • Liang, D., Hao, Z.Y., Zhang, G.J., Chen, R.Y., Yu, D.Q. (2011). Cytotoxic triterpenoid saponins from Lysimachia clethroides. J. Nat. Prod. 74: 2128-2136. doi: 10.1021/np2004038
  • Zhang, S.L., Yang., Z.N., He, C., Liao, H.B., Wang, H.S., Chen, Z.F. (2018). Oleanane-type triterpenoid saponins from Lysimachia fortune Maxim. Phytochemistry. 147: 140-146. doi: 10.1016/j.phytochem.2017.12.022
  • Wang, R., Xiao, X., Wang, P.Y., Wang, L., Guan, Q., Du, C., Wang, X.J. (2014). Stimulation of autophagic activity in human glioma cells by anti-proliferative ardipusilloside I isolated from Ardisia pusilla. Life Sci. 110: 15-22. doi: 10.1016/j.lfs.2014.06.016
  • Gong, Q.Q., Mu, L.H., Liu, P., Yang, S.L., Wang, B., Feng, Y.L. (2010). New triterpenoid saponin from Ardisia gigantifolia Stapf. Chin. Chem. Lett. 21: 449-452. doi: 10.1016/j.cclet.2009.12.029
  • Jansakul, C., Baumann, H., Kenne, L., Samuelsson, G. (1987). Ardisiacrispin A and B, two utero-contracting saponins from Ardisia crispa. Planta Med. 53: 405-9. doi: 10.1055/s-2006-962758
  • Dai, L.M., Huang, R.Z., Zhang, B., Hua, J., Wang, H.S., Liang, D. (2017). Cytotoxic triterpenoid saponins from Lysimachia foenum-graecum. Phytochemistry. 136: 165-174. doi: 10.1016/j.phytochem.2017.01.021
  • Mu, L.H., Gong, Q.Q., Zhao, H.X., Liu, P. (2010). Triterpenoid saponins from Ardisia gigantifolia. Chem. Pharm. Bull. 58: 1248-1251. doi: 10.1248/cpb.58.1248
  • Liang, B., Tian, J.K., Xu, L.Z., Yang, S.L. (2006). Titerpenoid saponins from Lysimachia davurica. Chem. Pharm. Bull. 54: 1380-1383 doi: 10.1248/cpb.54.1380
  • Koike, K., Jia, Z., Ohura, S., Mochida, S., Nikaido, T. (1999). Minor triterpenoid saponins from Ardisia crenata. Chem. Pharm. Bull. 47: 434-435. doi: 10.1248/cpb.47.434
  • Huang, J., Zhang, H., Shimizu, N., Takeda, T. (2003). Ardisimamillosides G and H, two new triterpenoid saponins from Ardisia mamillata. Chem. Pharm. Bull. 51: 875-877. doi: 10.1248/cpb.51.875
  • Jia, Z., Koike, K., Nikaido, T., Ohmoto, T. (1994a). Two novel triterpenoid pentasaccharides with an unusual glycosyl glycerol side chain from Ardisia crenata. Tetrahedron. 50: 11853-11864. doi: 10.1016/S0040-4020(01)89300-5
  • Tian, J.K., Xu, L.Z., Zou, Z.M., Yang, S.L. (2006). Three novel triterpenoid saponins from Lysimachia capillipes and their cytotoxic activities. Chem. Pharm. Bull. 54: 567-569 doi: 10.1248/cpb.54.567
  • Koike, K., Jia, Z., Nikaido, T. (2001). New triterpenoid saponins from Maesa tenera. Chem. Pharm. Bull. 49: 758-761. doi: 10.1248/cpb.49.758
  • Osamudiamen, P.M., Aiyelaagbe, O.O., Koul, S., Sangwan, P.L., Saxena, A.K. (2017). Isolation, Characterization and In vitro Anti-Cancer Activity of Bioactive Cassane Diterpenoids from the Roots of Mezoneuron benthamianum (Baill). J. Biologically Act. Prod. Nat. 7(3): 157-165. doi: 10.1080/22311866.2017.1335232
  • Xie, L. and Bourne, P.E. (2015). Developing multi-target therapeutics to fine-tune the evolutionary dynamics of the cancer ecosystem. Front. Pharmacol. 6: 1-5. doi: 10.3389/fphar.2015.00209
  • Kozubek, A., Tyman, J.H.P. (1999). Resorcinolic Lipids, the Natural Non-isoprenoid Phenolic Amphiphiles and Their Biological Activity. Chem. Rev. 99: 1-26. doi: 10.1021/cr970464o
  • Arisawa, M., Ohmura, K., Kobayashi, A., Morita, N. (1989). A Cytotoxic Constituent of Lysimachia japonica Thunb. (Primulaceae) and the Structure-Activity-Relationship of Related Compounds. Chem. Pharm. Bull. 37: 2431-2434. doi: 10.1248/cpb.37.2431
  • Sikdar, S., Nandy, S., Mukherjee, A., Bhattacharyya, R., Pandey, D.K., Dey, A. (2019). Phytoestrogens as Anticancer Therapeutics: A Retrospective and Future Perspective. J. Biologically Act. Prod. Nat. 9: 179-196. doi: 10.1080/22311866.2019.1649194
  • Lou, L., Ye, W., Chen, Y., Wu, S., Jin, L., He, J., Tao, X., Zhu, J., Chen, X., Deng, A., Wang, J. (2012). Ardipusilloside I inhibit survival, invasion and metastasis of human hepatocellular carcinoma cells. Phytomed. 19: 603-608. doi: 10.1016/j.phymed.2012.01.003
  • Xiong, J., Cheng, G., Tang, H.F., Zhen, H.N., Zhang, X. (2009). Ardipusilloside I induces apoptosis in human glioblastoma cells through a caspase-8-independent FasL/Fas-signaling pathway. Environ. Toxicol. Pharmacol. 27: 264-270 doi: 10.1016/j.etap.2008.11.008
  • Han, H., Yang, Y., wu, Z., Liu, B., Dong, L., Deng, H., Tian, J., Lei, H. (2021). Capilliposide B blocks VEGF-induced angiogenesis in vitro in primary human retinal microvascular endothelial cells. Biomed Pharmacother. 133: 110999-111005 doi: 10.1016/j.biopha.2020.110999

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.