84
Views
1
CrossRef citations to date
0
Altmetric
Review

Food-Derived Bioactive Peptides: A Promising Substitute to Chemosynthetic Drugs Against the Dysregulated Renin-Angiotensin System in COVID-19 Patients

, , ORCID Icon, , ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 325-355 | Received 16 Mar 2021, Accepted 15 Jun 2021, Published online: 11 Jul 2021

References

  • Zhou, P., Yang, X.L., Wang, X.G., Hu, B., Zhang, L., Zhang, W., Si, H.R., Zhu, Y., Li, B., Huang, C.L., Chen, H.D., Chen, J., Luo, Y., Guo, H., Jiang, R.D., Liu, M.Q., Chen, Y., Shen, X.R., Wang, X., Zheng, X.S., Zhao, K., Chen, Q.J., Deng, F., Liu, L.L., Yan, B., Zhan, F.X., Wang, Y.Y., Xiao, G.F. and Shi, Z.L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 579(7798): 270-273.
  • WHO. (2021b, 09-06-2021). WHO Coronavirus (COVID-19) Dashboard. Retrieved from https://covid19.who.int/
  • Begum, D. and Nagaraju, G.P. (2020). Understanding novel COVID-19: Its impact on organ failure and risk assessment for diabetic and cancer patients. Cytokine Growth Factor Reviews. 53: 43-52.
  • Patel, A.B. and Verma, A. (2020). COVID-19 and angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: what is the evidence? Jama. 323(18): 1769-1770.
  • Fang, L., Karakiulakis, G. and Roth, M. (2020). Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? The Lancet. Respiratory Medicine. 8(4): e21.
  • Đambić, V., Pojatić, Đ., Stažić, A. and Kibel, A. (2020). Significance of the Renin-Angiotensin System in Clinical Conditions. In Selected Chapters from the Renin-Angiotensin System. IntechOpen. 39 pp.
  • Wu, Y. (2020). Compensation of ACE2 function for possible clinical management of 2019-nCoV-induced acute lung injury. Virologica Sinica. 35(3): 256-258.
  • Meng, J., Xiao, G., Zhang, J., He, X., Ou, M., Bi, J., Yang, R., Di, W., Wang, Z., Li, Z., Gao, H., Liu, L. and Zhang, G. (2020). Renin-angiotensin system inhibitors improve the clinical outcomes of COVID-19 patients with hypertension. Emerging Microbes and Infections. 9(1): 757-760.
  • McKinney, C.A., Fattah, C., Loughrey, C.M., Milligan, G. and Nicklin, S.A. (2014). Angiotensin-(1-7) and angiotensin-(1-9): function in cardiac and vascular remodelling. Clinical Science. 126(12): 815-827.
  • e Silva, A.C.S. and Teixeira, M.M. (2016). ACE inhibition, ACE2 and angiotensin-(1-7) axis in kidney and cardiac inflammation and fibrosis. Pharmacological Research. 107: 154-162.
  • Rahman, M.H., Zahan, M., Hasib, T., Ahmed, K., Khanam, M., Omit, M., Moni, A. and Uddin, M.J. (2020). Current knowledge on mechanisms involved in SARS-CoV-2 infection and kidney diseases. Journal of Advanced Biotechnology and Experimental Therapeutics. 3(4): 30-35.
  • Vaduganathan, M., Vardeny, O., Michel, T., McMurray, J.J., Pfeffer, M.A. and Solomon, S.D. (2020). Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19. New England Journal of Medicine. 382(17): 1653-1659.
  • Liu, Y., Yang, Y., Zhang, C., Huang, F., Wang, F., Yuan, J., Wang, Z., Li, J., Li, J., Feng, C., Zhang, Z., Wang, L., Peng, L., Chen, L., Qin, Y., Zhao, D., Tan, S., Yin, L., Xu, J., Zhou, C., Jiang, C. and Liu, L. (2020). Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Science China Life Sciences. 63(3): 364-374.
  • Devaux, C.A., Rolain, J.-M. and Raoult, D. (2020). ACE2 receptor polymorphism: Susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. Journal of Microbiology, Immunology, and Infection. 53(3): 425-435.
  • Sungnak, W., Huang, N., Bécavin, C., Berg, M., Queen, R., Litvinukova, M., Talavera-López, C., Maatz, H., Reichart, D., Sampaziotis, F., Worlock, K.B., Yoshida, M., Barnes, J.L. and HCA Lung Biological Network (2020). SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nature Medicine. 26(5): 681-687.
  • Wrapp, D., Wang, N., Corbett, K.S., Goldsmith, J.A., Hsieh, C.-L., Abiona, O., Graham, B.S. and McLellan, J.S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 367(6483): 1260-1263.
  • Wouters, O.J., Shadlen, K.C., Salcher-Konrad, M., Pollard, A.J., Larson, H.J., Teerawattananon, Y. and Jit, M. (2021). Challenges in ensuring global access to COVID-19 vaccines: production, affordability, allocation, and deployment. The Lancet. 397(10278): 1023-1034.
  • WHO. (2020a). Update on COVID-19 vaccine development [Press release]. Retrieved from https://www.who.int/docs/default-source/coronaviruse/risk-comms-updates/update45-vaccines-developement.pdf?sfvrsn=13098bfc_5
  • Gurwitz, D. (2020). Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Development Research. 81(5): 537-540.
  • Casarini, D.E., Aragão, D.S., Arita, D.Y., Ronchi, F.A., Marcondes, F.K., Bertoncello, N.S.C., Rosa, R.M. and Cunha, T.S. (2012). Up-Regulation of Renin-Angiotensin System in Diabetes and Hypertension: Implications on the Development of Diabetic Nephropathy. In Diabetic nephropathy: INTECH Open Access Publisher. doi: https://doi.org/10.5772/36852.
  • Rossi, G.P., Sanga, V. and Barton, M. (2020). Potential harmful effects of discontinuing ACE-inhibitors and ARBs in COVID-19 patients. Elife. 9: e57278.
  • Sommerstein, R. and Gräni, C. (2020). Preventing a COVID-19 pandemic: ACE inhibitors as a potential risk factor for fatal COVID-19. BMJ. 368: m810.
  • Yang, Z., Liu, J., Zhou, Y., Zhao, X., Zhao, Q. and Liu, J. (2020). The effect of corticosteroid treatment on patients with coronavirus infection: a systematic review and meta-analysis. Journal of Infection. 81(1): e13-e20.
  • NIH. (2020). Corticosteroids (Including Dexamethasone)-Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. Retrieved from https://www.covid19treatmentguidelines.nih.gov/immune-based-therapy/immunomodulators/corticosteroids/
  • Lin, S.R., Lin, S.Y., Chen, C.C., Fu, Y.S. and Weng, C.F. (2019). Exploring a New Natural Treating Agent for Primary Hypertension: Recent Findings and Forthcoming Perspectives. Journal of Clinical Medicine. 8(11): 2003.
  • Hossain, K.S., Hossain, M.G., Moni, A., Rahman, M.M., Rahman, U.H., Alam, M., Kundu, S., Rahman, M.M., Hannan, M.A. and Uddin, M.J. (2020). Prospects of honey in fighting against COVID-19: pharmacological insights and therapeutic promises. Heliyon. 6(12): e05798.
  • Islam, M.N., Hossain, K.S., Sarker, P.P., Ferdous, J., Hannan, M.A., Rahman, M.M., Chu, D.T. and Uddin, M.J. (2021). Revisiting pharmacological potentials of Nigella sativa seed: A promising option for COVID-19 prevention and cure. Phytother. Res. 35(3): 1329-1344.
  • Xian, Y., Zhang, J., Bian, Z., Zhou, H., Zhang, Z., Lin, Z. and Xu, H. (2020). Bioactive natural compounds against human coronaviruses: a review and perspective. Acta Pharmaceutica Sinica. B. 10(7): 1163-1174.
  • Möller, N.P., Scholz-Ahrens, K.E., Roos, N. and Schrezenmeir, J. (2008). Bioactive peptides and proteins from foods: indication for health effects. European Journal of Nutrition. 47(4): 171-182.
  • Sánchez, A. and Vázquez, A. (2017). Bioactive peptides: A review. Food Quality Safety. 1(1): 29-46.
  • Daskaya-Dikmen, C., Yucetepe, A., Karbancioglu-Guler, F., Daskaya, H. and Ozcelik, B. (2017). Angiotensin-I-converting enzyme (ACE)-inhibitory peptides from plants. Nutrients. 9(4): 316.
  • Hernández-Ledesma, B., del Mar Contreras, M. and Recio, I. (2011). Antihypertensive peptides: production, bioavailability and incorporation into foods. Advances in colloid interface science. 165(1): 23-35.
  • Iwaniak, A., Minkiewicz, P. and Darewicz, M. (2014). Food-originating ACE inhibitors, including antihypertensive peptides, as preventive food components in blood pressure reduction. Comprehensive Reviews in Food Science and Food Safety. 13(2): 114-134.
  • Çakır, B., Okuyan, B., Şener, G. and Tunali-Akbay, T. (2021). Investigation of betalactoglobulin derived bioactive peptides against SARS-CoV-2 (COVID-19): in silico analysis. European Journal of Pharmacology. 891: 173781.
  • Shi, A.M., Guo, R., Wang, Q. and Zhou, J.R. (2021). Screening and Molecular Modeling Evaluation of Food Peptides to Inhibit Key Targets of COVID-19 Virus. Biomolecules. 11(2): 330.
  • Maiti, B.K. (2020). Potential role of peptide-based antiviral therapy against SARS-CoV-2 infection. ACS Pharmacology and Translational Science. 3(4): 783-785.
  • Riyadi, P.H., Tanod, W.A., Wahyudi, D., Susanto, E., Fahmi, A. and Aisiah, S. (2020). Potential of tilapia (Oreochromis niloticus) viscera bioactive peptides as antiviral for SARS-CoV-2 (COVID 19). Paper presented at the IOP Conference Series: Earth and Environmental Science. 584: 012004.
  • Padhi, S., Sanjukta, S., Chourasia, R., Labala, R.K., Singh, S.P. and Rai, A.K. (2021). A Multifunctional Peptide From Bacillus Fermented Soybean for Effective Inhibition of SARS-CoV-2 S1 Receptor Binding Domain and Modulation of Toll Like Receptor 4: A Molecular Docking Study. Frontiers in Molecular Biosciences. 8: 198.
  • Wong, F.C., Ong, J.H., Kumar, D.T. and Chai, T.T. (2021). In Silico Identification of Multitarget Anti-SARS-CoV-2 Peptides from Quinoa Seed Proteins. International Journal of Peptide Research and Therapeutics. 1-11.
  • Bhattacharya, R., Gupta, A.M., Mitra, S., Mandal, S. and Biswas, S.R.J.V. (2021). A natural food preservative peptide nisin can interact with the SARS-CoV-2 spike protein receptor human ACE2. Virology. 552: 107-111.
  • Jahandideh, F., Chakrabarti, S., Majumder, K., Li, Q., Panahi, S., Morton, J.S., Davidge, S.T. and Wu, J. (2016). Egg white protein hydrolysate reduces blood pressure, improves vascular relaxation and modifies aortic angiotensin II receptors expression in spontaneously hypertensive rats. Journal of Functional Foods. 27: 667-673.
  • Lavigne, C., Marette, A. and Jacques, H. (2000). Cod and soy proteins compared with casein improve glucose tolerance and insulin sensitivity in rats. American Journal of Physiology-Endocrinology Metabolism. 278(3): E491-E500.
  • Majumder, K., Chakrabarti, S., Morton, J.S., Panahi, S., Kaufman, S., Davidge, S.T. and Wu, J. (2015). Egg-derived ACE-inhibitory peptides IQW and LKP reduce blood pressure in spontaneously hypertensive rats. Journal of Functional Foods. 13: 50-60.
  • Majumder, K., Chakrabarti, S., Morton, J.S., Panahi, S., Kaufman, S., Davidge, S.T. and Wu, J. (2013). Egg-derived tri-peptide IRW exerts antihypertensive effects in spontaneously hypertensive rats. PloS One. 8(11): e82829.
  • Mojica, L., De Mejia, E.G., Menjivar, M. and Granados-Silvestre, M.Á. (2016). Antidiabetic Effect of Black Bean Peptides through Reduction of Glucose Absorption and Modulation of SGLT1, GLUT2 and DPP-IV in in vitro and in vivo Models. The FASEB Journal, 30(1_ supplement): 125.126-125.126.
  • Guan, W.J., Liang, W.H., Zhao, Y., Liang, H.R., Chen, Z.S., Li, Y.M., Liu, X.Q., Chen, R.C., Tang, C.L., Wang, T., Ou, C.Q., Li, L., Chen, P.Y., Sang, L., Wang, W., Li, J.F., Li, C.C., Ou, L.M., Cheng, B., Xiong, S., Ni, Z.Y., Xiang, J., Hu, Y., Liu, L., Shan, H., Lei, C.L., Peng, Y.X., Wei, L., Liu, Y., Hu, Y.H., Peng, P., Wang, J.M., Liu, J.Y., Chen, Z., Li, G., Zheng, Z.J., Qiu, S.Q., Luo, J., Ye, C.J., Zhu, S.Y., Cheng, L.L., Ye, F., Li, S.Y., Zheng, J.P., Zhang, N.F., Zhong, N.S. and He, J.X. (2020). Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur. Respir. J. 55(5): 2000547.
  • Liu, H., Chen, S., Liu, M., Nie, H. and Lu, H. (2020). Comorbid Chronic Diseases are Strongly Correlated with Disease Severity among COVID-19 Patients: A Systematic Review and Meta-Analysis. Aging Disease. 11(3): 668.
  • Guan, W.J., Ni, Z.Y., Hu, Y., Liang, W.H., Ou, C.Q., He, J.X., Liu, L., Shan, H., Lei, C.L., Hui, D.S.C., Du, B., Li, L.J., Zeng, G., Yuen, K.Y., Chen, R.C., Tang, C.L., Wang, T., Chen, P.Y., Xiang, J., Li, S.Y., Wang, J.L., Liang, Z.J., Peng, Y.X., Wei, L., Liu, Y., Hu, Y.H., Peng, P., Wang, J.M., Liu, J.Y., Chen, Z., Li, G., Zheng, Z.J., Qiu, S.Q., Luo, J., Ye, C.J., Zhu, S.Y. and Zhong, N.S. (2020). Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 382(18): 1708-1720.
  • Guo, W., Li, M., Dong, Y., Zhou, H., Zhang, Z., Tian, C., Qin, R., Wang, H., Shen, Y., Du, K., Zhao, L., Fan, H., Luo, S. and Hu, D. (2020). Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab. Res. Rev. 31: e3319.
  • Kreutz, R., Algharably, E.A.E.-H., Azizi, M., Dobrowolski, P., Guzik, T., Januszewicz, A., Persu, A., Prejbisz, A., Riemer, T.G., Wang, J.G. and Burnier, M. (2020). Hypertension, the renin-angiotensin system, and the risk of lower respiratory tract infections and lung injury: implications for COVID-19European Society of Hypertension COVID-19 Task Force Review of Evidence. Cardiovascular Research. 116(10): 1688-1699
  • Karalliedde, J. and Viberti, G. (2006). Evidence for renoprotection by blockade of the renin-angiotensin-aldosterone system in hypertension and diabetes. Journal of Human Hypertension. 20(4): 239-253.
  • Lim, H.S., MacFadyen, R.J. and Lip, G.Y. (2004). Diabetes mellitus, the renin-angiotensinaldosterone system, and the heart. Archives of Internal Medicine. 164(16): 1737-1748.
  • Gupta, R., Ghosh, A., Singh, A.K. and Misra, A. (2020). Clinical considerations for patients with diabetes in times of COVID-19 epidemic. Diabetes & Metabolic Syndrome. 14(3): 211.
  • Imai, Y., Kuba, K. and Penninger, J.M. (2007). Angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Cellular and Molecular Life Sciences. 64(15): 2006-2012.
  • Chappel, M. and Ferrario, C. (2006). ACE and ACE2: their role to balance the expression of angiotensin II and angiotensin-(1-7). Kidney International. 70(1): 8-10.
  • Santos, R., Ferreira, A.J., Verano-Braga, T. and Bader, M. (2013). Angiotensin-converting enzyme 2, angiotensin-(1-7) and Mas: new players of the renin-angiotensin system. Journal of Endocrinology. 216(2): R1-R17.
  • Cha, S.A., Park, B.M. and Kim, S.H. (2018). Angiotensin-(1-9) ameliorates pulmonary arterial hypertension via angiotensin type II receptor. The Korean Journal of Physiology & Pharmacology. 22(4): 447.
  • Zhou, M.S., Schulman, I.H. and Zeng, Q. (2012). Link between the renin-angiotensin system and insulin resistance: Implications for cardiovascular disease. Vascular Medicine. 17(5): 330-341.
  • Fyhrquist, F. and Saijonmaa, O. (2008). Renin-angiotensin system revisited. Journal of Internal Medicine. 264(3): 224-236.
  • Arendse, L.B., Danser, A.J., Poglitsch, M., Touyz, R.M., Burnett, J.C., Llorens-Cortes, C., Ehlers, M.R. and Sturrock, E.D. (2019). Novel therapeutic approaches targeting the renin-angiotensin system and associated peptides in hypertension and heart failure. Pharmacological Reviews. 71(4): 539-570.
  • Li, S.R., Tang, Z.J., Li, Z.H. and Liu, X. (2020). Searching therapeutic strategy of new coronavirus pneumonia from angiotensin-converting enzyme 2: the target of COVID-19 and SARS-CoV. European Journal of Clinical Microbiology & Infectious Diseases. 39(6): 1021.
  • Yang, C.-W., Lu, L.-C., Chang, C.-C., Cho, C.-C., Hsieh, W.-Y., Tsai, C.-H., Lin, Y.-C. and Lin, C.-S. (2017). Imbalanced plasma ACE and ACE2 level in the uremic patients with cardiovascular diseases and its change during a single hemodialysis session. Renal Failure. 39(1): 719-728.
  • Tolouian, R., Vahed, S.Z., Ghiyasvand, S., Tolouian, A. and Ardalan, M. (2020). COVID-19 interactions with angiotensin-converting enzyme 2 (ACE2) and the kinin system; looking at a potential treatment. Journal of Renal Injury Prevention. 9(2): e19.
  • Delbridge, L.M., Bienvenu, L.A. and Mellor, K.M. (2016). Angiotensin-(1-9): New Promise for Post-Infarct Functional Therapy. Journal of the American College of Cardiology. 68(24): 2667-2669.
  • Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Sullivan, J.L., Luzuriaga, K., Greenough, T.C., Choe, H., Farzan, M. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 426(6965): 450-454.
  • Zhang, H., Penninger, J.M., Li, Y., Zhong, N. and Slutsky, A.S. (2020). Angiotensinconverting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Medicine. 46(4): 586-590.
  • Xu, J., Zhao, S., Teng, T., Abdalla, A. E., Zhu, W., Xie, L., Wang, Y. and Guo, X. (2020). Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses. 12(2): 244.
  • Wan, Y., Shang, J., Graham, R., Baric, R.S. and Li, F. (2020). Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. Journal of Virology. 94(7): e00127-00120.
  • Zhou, L., Niu, Z., Jiang, X., Zhang, Z., Zheng, Y., Wang, Z., Zhu, Y., Gao, L., Wang, X. and Sun, Q. (2020). Systemic analysis of tissue cells potentially vulnerable to SARS-CoV-2 infection by the protein-proofed single-cell RNA profiling of ACE2, TMPRSS2 and Furin proteases. In preprint. doi:https://doi.org/10.1101/2020.04.06.028522
  • Jia, H. P., Look, D. C., Shi, L., Hickey, M., Pewe, L., Netland, J., Farzan, M., Wohlford-Lenane, C., Perlman, S. and McCray, P.B. Jr. (2005). ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. Journal of Virology. 79(23): 14614-14621.
  • Prasanna, P.L. and Abilash, V. (2020). Coronaviruses pathogenesis, comorbidities and multiorgan damage-A review. Life Sciences. 255: 117839.
  • Huang, F., Guo, J., Zou, Z., Liu, J., Cao, B., Zhang, S., Li, H., Wang, W., Sheng, M., Liu, S., Pan, J., Bao, C., Zeng, M., Xiao, H., Qian, G., Hu, X., Chen, Y., Chen, Y., Zhao, Y., Liu, Q., Zhou, H., Zhu, J., Gao, H., Yang, S., Liu, X., Zheng, S., Yang, J., Diao, H., Cao, H., Wu, Y., Zhao, M., Tan, S., Guo, D., Zhao, X., Ye, Y., Wu, W., Xu, Y., Penninger, J.M., Li, D., Gao, G.F., Jiang, C. and Li, L. (2014). Angiotensin II plasma levels are linked to disease severity and predict fatal outcomes in H7N9-infected patients. Nat. Commun. 5: 3595.
  • Zou, Z., Yan, Y., Shu, Y., Gao, R., Sun, Y., Li, X., Ju, X., Liang, Z., Liu, Q., Zhao, Y., Guo, F., Bai, T., Han, Z., Zhu, J., Zhou, H., Huang, F., Li, C., Lu, H., Li, N., Li, D., Jin, N., Penninger, J.M. and Jiang, C. (2014). Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections. Nat. Commun. 5: 3594.
  • Kuba, K., Imai, Y., Rao, S., Gao, H., Guo, F., Guan, B., Huan, Y., Yang, P., Zhang, Y., Deng, W., Bao, L., Zhang, B., Liu, G., Wang, Z., Chappell, M., Liu, Y., Zheng, D., Leibbrandt, A., Wada, T., Slutsky, A.S., Liu, D., Qin, C., Jiang, C. and Penninger, J.M. (2005). A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nature Medicine. 11(8): 875-879.
  • Imai, Y., Kuba, K., Rao, S., Huan, Y., Guo, F., Guan, B., Yang, P., Sarao, R., Wada, T., Leong-Poi, H., Crackower, M.A., Fukamizu, A., Hui, C.C., Hein, L., Uhlig, S., Slutsky, A.S., Jiang, C. and Penninger, J.M. (2005). Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 436(7047): 112-116.
  • Patel, V. B., Bodiga, S., Basu, R., Das, S. K., Wang, W., Wang, Z., Lo, J., Grant, M.B., Zhong, J., Kassiri, Z. and Oudit, G.Y. (2012). Loss of angiotensin-converting enzyme-2 exacerbates diabetic cardiovascular complications and leads to systolic and vascular dysfunction: a critical role of the angiotensin II/AT1 receptor axis. Circ. Res. 110(10): 1322-35.
  • Ali, Q., Dhande, I., Samuel, P. and Hussain, T. (2016). Angiotensin type 2 receptor null mice express reduced levels of renal angiotensin converting enzyme-2/angiotensin (1-7)/ Mas receptor and exhibit greater high-fat diet-induced kidney injury. Journal of the Renin-Angiotensin-Aldosterone System. 17(3): 1470320316661871.
  • Marshall, R.P. (2003). The pulmonary renin-angiotensin system. Current Pharmaceutical Design. 9(9): 715-722.
  • Marshall, R.P., Gohlke, P., Chambers, R.C., Howell, D.C., Bottoms, S.E., Unger, T., McAnulty, R.J. and Laurent, G.J. (2004). Angiotensin II and the fibroproliferative response to acute lung injury. American Journal of Physiology-Lung Cellular and Molecular Physiology. 286(1): L156-L164.
  • Szczepanska-Sadowska, E., Czarzasta, K. and Cudnoch-Jedrzejewska, A. (2018). Dysregulation of the renin-angiotensin system and the vasopressinergic system interactions in cardiovascular disorders. Current Hypertension Reports. 20(3): 19.
  • Carey, R.M. and Siragy, H.M. (2003). Newly recognized components of the renin-angiotensin system: potential roles in cardiovascular and renal regulation. Endocrine Reviews, 24(3): 261-271.
  • Tang, Y., Liu, J., Zhang, D., Xu, Z., Ji, J. and Wen, C. (2020). Cytokine storm in COVID-19: the current evidence and treatment strategies. Frontiers in Immunology. 11: 1708.
  • El Chami, H. and Hassoun, P.M. (2012). Immune and inflammatory mechanisms in pulmonary arterial hypertension. Progress in Cardiovascular Diseases. 55(2): 218-228.
  • Zhang, Y., Gao, Y., Qiao, L., Wang, W. and Chen, D. (2020). Inflammatory response cells during acute respiratory distress syndrome in patients with coronavirus disease 2019 (COVID-19). Annals of Internal Medicine. L20-0227.
  • e Silva, A.C.S., Ferreira, R.N. and Miranda, A.S. (2017). The Renin Angiotensin System and Diabetes. In Mechanisms of Vascular Defects in Diabetes Mellitus. Springer. 275-291 pp.
  • Chawla, T., Sharma, D. and Singh, A. (2010). Role of the renin angiotensin system in diabetic nephropathy. World Journal of Diabetes. 1(5): 141-145.
  • Alghamri, M.S., Weir, N.M., Anstadt, M.P., Elased, K.M., Gurley, S.B. and Morris, M. (2013). Enhanced angiotensin II-induced cardiac and aortic remodeling in ACE2 knockout mice. Journal of Cardiovascular Pharmacology and Therapeutics. 18(2): 138-151.
  • Maddaloni, E. and Buzzetti, R. (2020). Covid-19 and diabetes mellitus: unveiling the interaction of two pandemics. Diabetes/Metabolism Research Reviews. e33213321.
  • Tipnis, S.R., Hooper, N.M., Hyde, R., Karran, E., Christie, G. and Turner, A.J. (2000). A human homolog of angiotensin-converting enzyme cloning and functional expression as a captopril-insensitive carboxypeptidase. Journal of Biological Chemistry. 275(43): 33238-33243.
  • Lau, T., Carlsson, P.O. and Leung, P. (2004). Evidence for a local angiotensin-generating system and dose-dependent inhibition of glucose-stimulated insulin release by angiotensin II in isolated pancreatic islets. Diabetologia. 47(2): 240-248.
  • Ghiani, B.U. and Masini, M. (1995). Angiotensin II binding sites in the rat pancreas and their modulation after sodium loading and depletion. Comparative Biochemistry and Physiology Part A: Physiology. 111(3): 439-444.
  • Carlsson, P.O. (2001). The renin-angiotensin system in the endocrine pancreas. Journal of the Pancreas. 2(1): 26-32.
  • Hsueh, W. A. and Wyne, K. (2011). Renin-angiotensin-aldosterone system in diabetes and hypertension. The Journal of Clinical Hypertension. 13(4): 224-237.
  • Burns, K.D. (2000). Angiotensin II and its receptors in the diabetic kidney. American Journal of Kidney Diseases. 36(3): 449-467.
  • Bernardi, S., Michelli, A., Zuolo, G., Candido, R. and Fabris, B. (2016). Update on RAAS modulation for the treatment of diabetic cardiovascular disease. Journal of Diabetes Research. 2016: 8917578.
  • Navar, L.G. (2004). The intrarenal renin-angiotensin system in hypertension. Kidney International. 65(4): 1522-1532.
  • Van Buren, P.N. and Toto, R. (2011). Hypertension in diabetic nephropathy: epidemiology, mechanisms, and management. Advances in Chronic Kidney Disease. 18(1): 28-41.
  • WHO. (2021a). The effects of virus variants on COVID-19 vaccines. Retrieved from https://www.who.int/news-room/feature-stories/detail/the-effects-of-virus-variants-on-covid-19-vaccines
  • Gheblawi, M., Wang, K., Viveiros, A., Nguyen, Q., Zhong, J.-C., Turner, A. J., Raizada, M.K., Grant, M. and Oudit, G.Y. (2020). Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circulation Research. 126(10): 1456-1474.
  • Trifirò, G., Crisafulli, S., Andò, G., Racagni, G., Drago, F. and Pharmacology, I.S.O. (2020). Should patients receiving ACE inhibitors or angiotensin receptor blockers be switched to other antihypertensive drugs to prevent or improve prognosis of novel coronavirus disease 2019 (COVID-19)? Drug Safety. 43(6): 507-509.
  • Williams, B. and Zhang, Y. (2020). Hypertension, renin-angiotensin-aldosterone system inhibition, and COVID-19. The Lancet Respiratory Medicine. 395(10238): 1671-1673.
  • Sommerstein, R., Kochen, M.M., Messerli, F.H. and Gräni, C. (2020). Coronavirus Disease 2019 (COVID-19): Do Angiotensin-Converting Enzyme Inhibitors/Angiotensin Receptor Blockers Have a Biphasic Effect? Journal of the American Heart Association. 9(7): e016509.
  • Akhtar, S., Benter, I.F., Danjuma, M.I., Doi, S.A., Hasan, S.S. and Habib, A.M. (2020). Pharmacotherapy in COVID-19 patients: A review of ACE2-raising drugs and their clinical safety. Journal of Drug Targeting. 28(7-8): 683-699.
  • Sanchis-Gomar, F., Lavie, C.J., Perez-Quilis, C., Henry, B.M. and Lippi, G. (2020). Angiotensin-Converting Enzyme 2 and antihypertensives (angiotensin receptor blockers and angiotensin-converting enzyme inhibitors) in Coronavirus Disease 2019. Mayo Clinic Proceedings. 95(6): 1222-1230.
  • Kuster, G. M., Pfister, O., Burkard, T., Zhou, Q., Twerenbold, R., Haaf, P., Widmer, A.F. and Osswald, S. (2020). SARS-CoV2: should inhibitors of the renin-angiotensin system be withdrawn in patients with COVID-19? European Heart Journal. 41(19): 1801-1803.
  • Ferrario, C.M. (2016). Cardiac remodelling and RAS inhibition. Therapeutic Advances in Cardiovascular Disease. 10(3): 162-171.
  • Scheen, A. (2004). Renin-angiotensin system inhibition prevents type 2 diabetes mellitus. Part 1. A meta-analysis of randomised clinical trials. Diabetes & Metabolism. 30(6): 487-496.
  • Shiuchi, T., Cui, T.X., Wu, L., Nakagami, H., Takeda-Matsubara, Y., Iwai, M. and Horiuchi, M. (2002). ACE inhibitor improves insulin resistance in diabetic mouse via bradykinin and NO. Hypertension. 40(3): 329-334.
  • Goossens, G., Blaak, E., Schiffers, P., Saris, W. and Van Baak, M. (2006). Effect of shortterm ACE inhibitor treatment on peripheral insulin sensitivity in obese insulin-resistant subjects. Diabetologia. 49(12): 3009-3016.
  • Ruggenenti, P., Cravedi, P. and Remuzzi, G. (2010). The RAAS in the pathogenesis and treatment of diabetic nephropathy. Nature Reviews Nephrology. 6(6): 319.
  • Ong, H.T., Ong, L.M. and Ho, J.J. (2013). Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin-receptor blockers (ARBs) in patients at high risk of cardiovascular events: a meta-analysis of 10 randomised placebo-controlled trials. ISRN Cardiology. 2013: 478597.
  • Ko, D., Azizi, P., Koh, M., Chong, A., Austin, P., Stukel, T. and Jackevicius, C. (2019). Comparative effectiveness of ACE inhibitors and angiotensin receptor blockers in patients with prior myocardial infarction. Open Heart. 6(1): e001010.
  • Xu, R., Sun, S., Huo, Y., Yun, L., Huang, S., Li, G. and Yan, S. (2015). Effects of ACEIs versus ARBs on proteinuria or albuminuria in primary hypertension: a meta-analysis of randomized trials. Medicine. 94(39): e1560.
  • Ocaranza, M. P., Lavandero, S., Jalil, J. E., Moya, J., Pinto, M., Novoa, U., Apablaza, F., Gonzalez, L., Hernandez, C., Varas, M., Lopez, R., Godoy, I., Verdejo, H. and Chiong, M. (2010). Angiotensin-(1-9) regulates cardiac hypertrophy in vivo and in vitro. J. Hypertens. 28(5): 1054-64.
  • Shu, G., Huang, J., Bao, C., Meng, J., Chen, H. and Cao, J. (2018). Effect of different proteases on the degree of hydrolysis and angiotensin I-converting enzyme-inhibitory activity in goat and cow milk. Biomolecules. 8(4): 101.
  • Goyal, A., Cusick, A.S. and Thielemier, B. (2017). ACE Inhibitors. In StatPearls: StatPearls Publisher.
  • Khan, H., Nabavi, S.M. and Habtemariam, S. (2018). Anti-diabetic potential of peptides: Future prospects as therapeutic agents. Life Sciences. 193: 153-158.
  • Patil, P., Mandal, S., Tomar, S.K. and Anand, S. (2015). Food protein-derived bioactive peptides in management of type 2 diabetes. European Journal of Nutrition. 54(6): 863-880.
  • Betônico, C.C., Titan, S.M., Correa-Giannella, M.L.C., Nery, M. and Queiroz, M. (2016). Management of diabetes mellitus in individuals with chronic kidney disease: therapeutic perspectives and glycemic control. Clinics. 71(1): 47-53.
  • FDA, U. (2016). FDA Drug Safety Communication: FDA warns that DPP-4 inhibitors for type 2 diabetes may cause severe joint pain. Retrieved from http://www.fda.gov/Drugs/DrugSafety/ucm459579.htm.
  • WHO. (2020b). WHO welcomes preliminary results about dexamethasone use in treating critically ill COVID-19 patients. Retrieved from https://www.who.int/news-room/detail/16-06-2020-who-welcomes-preliminary-results-about-dexamethasone-use-in-treating-critically-ill-covid-19-patients
  • Zha, L., Li, S., Pan, L., Tefsen, B., Li, Y., French, N., Chen, L., Yang, G. and Villanueva, E.V. (2020). Corticosteroid treatment of patients with coronavirus disease 2019 (COVID-19). Medical Journal of Australia. 212(9): 416-420.
  • Wijesekara, I. and Kim, S.K. (2010). Angiotensin-I-converting enzyme (ACE) inhibitors from marine resources: Prospects in the pharmaceutical industry. Marine Drugs. 8(4): 1080-1093.
  • Admassu, H., Zhao, W., Yang, R., Gasmalla, M. and Alsir, E. (2015). Development of functional foods: seaweeds (algae) untouched potential and alternative resource-a review. International Journal of Scientific & Technology. 4(9): 108-115.
  • Korhonen, H. and Pihlanto, A. (2006). Bioactive peptides: production and functionality. International Dairy Journal. 16(9): 945-960.
  • Udenigwe, C.C. and Aluko, R.E. (2012). Food protein-derived bioactive peptides: production, processing, and potential health benefits. Journal of Food Science. 77(1): R11-R24.
  • Chatterjee, C., Gleddie, S. and Xiao, C.W. (2018). Soybean bioactive peptides and their functional properties. Nutrients. 10(9): 1211.
  • Bhat, Z., Kumar, S. and Bhat, H.F. (2015). Bioactive peptides of animal origin: a review. Journal of Food Science and Technology. 52(9): 5377-5392.
  • Haug, A., Høstmark, A.T. and Harstad, O.M. (2007). Bovine milk in human nutrition-a review. Lipids in Health Disease. 6(1): 25.
  • Yousr, M. and Howell, N. (2015). Antioxidant and ACE inhibitory bioactive peptides purified from egg yolk proteins. International Journal of Molecular Sciences. 16(12): 29161-29178.
  • Sanjukta, S. and Rai, A.K. (2016). Production of bioactive peptides during soybean fermentation and their potential health benefits. Trends in Food Science & Technology. 50: 1-10.
  • Aluko, R.E. (2015). Structure and function of plant protein-derived antihypertensive peptides. Current Opinion in Food Science. 4: 44-50.
  • Lee, S.Y. and Hur, S.J. (2019). Purification of novel angiotensin converting enzyme inhibitory peptides from beef myofibrillar proteins and analysis of their effect in spontaneously hypertensive rat model. Biomedicine & Pharmacotherapy. 116: 109046.
  • Frenhani, P.B. and Burini, R.C. (1999). Mechanisms of amino acids and oligopeptides absorption in humans. Arquivos de Gastroenterologia. 36(4): 227-237.
  • Acquah, C., Di Stefano, E. and Udenigwe, C.C. (2018). Role of hydrophobicity in food peptide functionality and bioactivity. Journal of Food Bioactives. 4: 88-98.
  • Silvestre, M.P.C., Silva, M.R., Silva, V.D.M., Souza, M.W.S.de., Lopes Junior, C.de.O. and Afonso, W.de.O. (2012). Analysis of whey protein hydrolysates: peptide profile and ACE inhibitory activity. Brazilian Journal of Pharmaceutical Sciences. 48(4): 747-757.
  • Lammi, C., Aiello, G., Boschin, G. and Arnoldi, A. (2019). Multifunctional peptides for the prevention of cardiovascular disease: A new concept in the area of bioactive food-derived peptides. Journal of Functional Foods. 55: 135-145.
  • Wu, Q., Jia, J., Yan, H., Du, J. and Gui, Z. (2015). A novel angiotensin-І converting enzyme (ACE) inhibitory peptide from gastrointestinal protease hydrolysate of silkworm pupa (Bombyx mori) protein: biochemical characterization and molecular docking study. Peptides. 68: 17-24.
  • Pina, A. and Roque, A. (2009). Studies on the molecular recognition between bioactive peptides and angiotensin-converting enzyme. Journal of Molecular Recognition. 22(2): 162-168.
  • Ma, F.F., Wang, H., Wei, C.K., Thakur, K., Wei, Z.J. and Jiang, L. (2019). Three novel ACE inhibitory peptides isolated from Ginkgo biloba seeds: Purification, inhibitory kinetic and mechanism. Frontiers in Pharmacology. 9: 1579.
  • Yu, Z., Guo, H., Shiuan, D., Xia, C., Zhao, W., Ding, L., Zheng, F. and Liu, J. (2020). Interaction mechanism of egg white-derived ACE inhibitory peptide TNGIIR with ACE and its effect on the expression of ACE and AT1 receptor. Food Science and Human Wellness. 9(1): 52-57.
  • Wang, R., Lu, X., Sun, Q., Gao, J., Ma, L. and Huang, J. (2020). Novel ACE Inhibitory Peptides Derived from Simulated Gastrointestinal Digestion in Vitro of Sesame (Sesamum indicum L.) Protein and Molecular Docking Study. International Journal of Molecular Sciences. 21(3): 1059.
  • Ocaranza, M.P. and Jalil, J.E. (2012). Protective role of the ACE2/Ang-(1-9) axis in cardiovascular remodeling. International Journal of Hypertension. 2012: 594361.
  • Lee, S.H., Qian, Z.J. and Kim, S.K. (2010). A novel angiotensin I converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats. Food Chemistry. 118(1): 96-102.
  • Fernández-Musoles, R., Castello-Ruiz, M., Arce, C., Manzanares, P., Ivorra, M.D. and Salom, J.B. (2014). Antihypertensive mechanism of lactoferrin-derived peptides: angiotensin receptor blocking effect. Journal of Agricultural and Food Chemistry. 62(1): 173-181.
  • Wu, J., Liao, W. and Udenigwe, C.C. (2017). Revisiting the mechanisms of ACE inhibitory peptides from food proteins. Trends in Food Science Technology. 69: 214-219.
  • Hirota, T., Nonaka, A., Matsushita, A., Uchida, N., Ohki, K., Asakura, M. and Kitakaze, M. (2011). Milk casein-derived tripeptides, VPP and IPP induced NO production in cultured endothelial cells and endothelium-dependent relaxation of isolated aortic rings. Heart Vessels, 26(5): 549-556.
  • Ibrahim, H.R., Ahmed, A.S. and Miyata, T. (2017). Novel angiotensin-converting enzyme inhibitory peptides from caseins and whey proteins of goat milk. Journal of Advanced Research. 8(1): 63-71.
  • Memarpoor-Yazdi, M., Asoodeh, A. and Chamani, J. (2012). Structure and ACE-inhibitory activity of peptides derived from hen egg white lysozyme. International Journal of Peptide Research and Therapeutics. 18(4): 353-360.
  • Matsui, T., Li, C.H. and Osajima, Y. (1999). Preparation and characterization of novel bioactive peptides responsible for angiotensin I-converting enzyme inhibition from wheat germ. Journal of Peptide Science. 5(7): 289-297.
  • Suh, H.J., Whang, J. and Lee, H. (1999). A peptide from corn gluten hydrolysate that is inhibitory toward angiotensin I converting enzyme. Biotechnology Letters. 21(12): 1055-1058.
  • Li, G.H., Le, G.W., Liu, H. and Shi, Y.H. (2005). Mung-bean protein hydrolysates obtained with alcalase exhibit angiotensin I-converting enzyme inhibitory activity. Food Science and Technology International. 11(4): 281-287.
  • Alu'datt, M.H., Ereifej, K., Abu-Zaiton, A., Alrababah, M., Almajwal, A., Rababah, T. and Yang, W. (2012). Anti-oxidant, anti-diabetic, and anti-hypertensive effects of extracted phenolics and hydrolyzed peptides from barley protein fractions. International Journal of Food Properties. 15(4): 781-795.
  • Kasina, S.V.S.K. and Baradhi, K.M. (2019). Dipeptidyl Peptidase IV (DPP IV) Inhibitors. In StatPearls: StatPearls Publishing.
  • Tundis, R., Loizzo, M. and Menichini, F. (2010). Natural products as α-amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini Reviews in Medicinal Chemistry. 10(4): 315-331.
  • Lacroix, I.M. and Li-Chan, E.C. (2013). Inhibition of dipeptidyl peptidase (DPP)-IV and α-glucosidase activities by pepsin-treated whey proteins. Journal of Agricultural Food Chemistry. 61(31): 7500-7506.
  • Konrad, B., Anna, D., Marek, S., Marta, P., Aleksandra, Z. and Józefa, C. (2014). The evaluation of dipeptidyl peptidase (DPP)-IV, α-glucosidase and angiotensin converting enzyme (ACE) inhibitory activities of whey proteins hydrolyzed with serine protease isolated from Asian pumpkin (Cucurbita ficifolia). International Journal of Peptide Research and Therapeutics. 20(4): 483-491.
  • Amerongen, A.V., Beelen, M.J.C.B., Wolbers, L.A.M.Z., Gilst, W.H.V., Buikema, J.H. and Nelissen, J.W.P.M. (2009). World Intellectual Property Organization. Patent No. WO 2009128713
  • Yu, Z., Yin, Y., Zhao, W., Yu, Y., Liu, B., Liu, J. and Chen, F. (2011). Novel peptides derived from egg white protein inhibiting alpha-glucosidase. Food Chemistry. 129(4): 1376-1382.
  • Yu, Z., Yin, Y., Zhao, W., Liu, J. and Chen, F. (2012). Anti-diabetic activity peptides from albumin against α-glucosidase and α-amylase. Food Chemistry. 135(3): 2078-2085.
  • Power, O., Nongonierma, A.B., Jakeman, P. and FitzGerald, R.J. (2014). Food protein hydrolysates as a source of dipeptidyl peptidase IV inhibitory peptides for the management of type 2 diabetes. Proceedings of the Nutrition Society. 73(1): 34-46.
  • Mojica, L. and De Mejía, E.G. (2016). Optimization of enzymatic production of anti-diabetic peptides from black bean (Phaseolus vulgaris L.) proteins, their characterization and biological potential. Food Function. 7(2): 713-727.
  • González-Montoya, M., Hernández-Ledesma, B., Mora-Escobedo, R. and Martínez-Villaluenga, C. (2018). Bioactive peptides from germinated soybean with anti-diabetic potential by inhibition of dipeptidyl peptidase-IV, α-amylase, and α-glucosidase enzymes. International Journal of Molecular Sciences. 19(10): 2883.
  • Gaudel, C., Nongonierma, A.B., Maher, S., Flynn, S., Krause, M., Murray, B.A., Kelly, P.M., Baird, A.W., FitzGerald, R.J. and Newsholme, P. (2013). A whey protein hydrolysate promotes insulinotropic activity in a clonal pancreatic β-cell line and enhances glycemic function in ob/ob mice. The Journal of Nutrition. 143(7): 1109-1114.
  • Barnes, M.J., Uruakpa, F. and Udenigwe, C. (2015). Influence of cowpea (Vigna unguiculata) peptides on insulin resistance. Journal of Nutritional Health & Food Science. 3(2): 1-3.
  • Zhang, H., Wang, J., Liu, Y. and Sun, B. (2015). Peptides Derived from Oats Improve Insulin Sensitivity and Lower Blood Glucose in Streptozotocin-Induced Diabetic Mice. Journal of Biomedical Science. 4(1).
  • Huang, F.J. and Wu, W.T. (2010). Purification and characterization of a new peptide (s-8300) from shark liver. Journal of Food Biochemistry. 34(5): 962-970.
  • Lavigne, C., Tremblay, F., Asselin, G., Jacques, H. and Marette, A. (2001). Prevention of skeletal muscle insulin resistance by dietary cod protein in high fat-fed rats. American Journal of Physiology-Endocrinology Metabolism. 281(1): E62-E71.
  • Son, M., Chan, C. B. and Wu, J. (2018). Egg white ovotransferrin-derived ACE inhibitory peptide ameliorates angiotensin II-stimulated insulin resistance in skeletal muscle cells. Molecular Nutrition & Food Research. 62(4): 1700602.
  • Matsui, T., Oki, T. and Osajima, Y. (1999). Isolation and identification of peptidic α-glucosidase inhibitors derived from sardine muscle hydrolyzate. Zeitschrift für Naturforschung C. 54(3-4): 259-263.
  • Liu, M., Gao, Y., Zhang, Y., Shi, S., Chen, Y. and Tian, J. (2020). The association between severe or death COVID-19 and autoimmune disease: a systematic review and meta-analysis. The Journal of Infection. 81(3): e93-e95.
  • Zhao, Y., Nie, H.X., Hu, K., Wu, X.J., Zhang, Y.T., Wang, M.M., Wang, T., Zheng, Z.S., Li, X.C. and Zeng, S.L. (2020). Abnormal immunity of non-survivors with COVID-19: predictors for mortality. Infectious Diseases of Poverty. 9(1): 1-10.
  • Hannan, M.A., Rahman, M.A., Rahman, M.S., Sohag, A.A.M., Dash, R., Hossain, K.S., Farjana, M. and Uddin, M.J. (2020). Intermittent fasting, a possible priming tool for host defense against SARS-CoV-2 infection: Crosstalk among calorie restriction, autophagy and immune response. Immunology Letters. 226: 38-45.
  • Hannan, M., Islam, M. and Uddin, M. (2020). Self-confidence as an immune-modifying psychotherapeutic intervention for COVID-19 patients and understanding of its connection to CNS-endocrine-immune axis. Journal of Advanced Biotechnology and Experimental Therapeutics. 3(4): 14.
  • Chalamaiah, M., Yu, W. and Wu, J. (2018). Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chemistry. 245: 205-222.
  • Kang, H.K., Lee, H.H., Seo, C.H. and Park, Y. (2019). Antimicrobial and immunomodulatory properties and applications of marine-derived proteins and peptides. Marine Drugs. 17(6): 350.
  • Egusa, S. and Otani, H. (2009). Characterization of a cellular immunostimulating peptide from a soybean protein fraction digested with peptidase R. Journal of Nutritional Science and Vitaminology. 55(5): 428-433.
  • Yuda, N., Tanaka, M., Tokushima, M. and Abe, F. (2021). Safety evaluation of high-dose intake of casein-derived peptide Met-Lys-Pro in healthy adults: A randomized, double-blind, placebo-controlled trial. Food Science & Nutrition. 9(2): 662-671.
  • Devasia, S., Kumar, S., Stephena, P., Inoue, N., Sugihara, F. and Koizumi, S. (2019). A Double Blind, Randomised, Four Arm Clinical Study to Evaluate the Safety, Efficacy and Tolerability of Collagen Peptide as a Nutraceutical Therapy in the Management of Type II Diabetes Mellitus. Journal of Diabetes & Metabolism. 11(1): 839.
  • Samsamikor, M., Mackay, D., Mollard, R.C. and Aluko, R.E. (2020). A double-blind, randomized, crossover trial protocol of whole hemp seed protein and hemp seed protein hydrolysate consumption for hypertension. Trials. 21(1): 354.
  • Fuller, N. R., Caterson, I. D., Sainsbury, A., Denyer, G., Fong, M., Gerofi, J., Baqleh, K., Williams, K.H., Lau, N.S. and Markovic, T.P. (2015). The effect of a high-egg diet on cardiovascular risk factors in people with type 2 diabetes: the Diabetes and Egg (DIABEGG) study-a 3-mo randomized controlled trial. Am. J. Clin. Nutr. 101(4): 705-713.
  • Korhonen, H. (2009). Milk-derived bioactive peptides: From science to applications. Journal of Functional Foods. 1(2): 177-187.
  • McClements, D.J., Zou, L., Zhang, R., Salvia-Trujillo, L., Kumosani, T. and Xiao, H. (2015). Enhancing nutraceutical performance using excipient foods: designing food structures and compositions to increase bioavailability. Comprehensive Reviews in Food Science and Food Safety. 14(6): 824-847.
  • Ding, L., Wang, L., Yu, Z., Zhang, T. and Liu, J. (2016). Digestion and absorption of an egg white ACE-inhibitory peptide in human intestinal Caco-2 cell monolayers. International Journal of Food Sciences and Nutrition. 67(2): 111-116.
  • Yamada, Y., Matoba, N., Usui, H., Onishi, K. and Yoshikawa, M. (2002). Design of a highly potent anti-hypertensive peptide based on ovokinin (2-7). Bioscience, Biotechnology, and Biochemistry. 66(6): 1213-1217.
  • Chen, T.L., Lo, Y.C., Hu, W.T., Wu, M.C., Chen, S.T. and Chang, H.M. (2003). Microencapsulation and modification of synthetic peptides of food proteins reduces the blood pressure of spontaneously hypertensive rats. Journal of Agricultural Food Chemistry. 51(6): 1671-1675.
  • Jao, C.L., Huang, S.L. and Hsu, K.C. (2012). Angiotensin I-converting enzyme inhibitory peptides: Inhibition mode, bioavailability, and antihypertensive effects. BioMedicine. 2(4): 130-136.
  • Vermeirssen, V., Van Camp, J. and Verstraete, W. (2004). Bioavailability of angiotensin I converting enzyme inhibitory peptides. British Journal of Nutrition. 92(3): 357-366.
  • Sharma, R. (2012). Enzyme inhibition: mechanisms and scope. In Enzyme inhibition and bioapplications. IntechOpen. 3-36 pp.
  • Li, Y., Zeng, Z., Li, Y., Huang, W., Zhou, M., Zhang, X. and Jiang, W. (2015). Angiotensin-converting enzyme inhibition attenuates lipopolysaccharide-induced lung injury by regulating the balance between angiotensin-converting enzyme and angiotensin-converting enzyme 2 and inhibiting mitogen-activated protein kinase activation. Shock. 43(4): 395-404.
  • Ferrario, C.M., Jessup, J., Chappell, M.C., Averill, D.B., Brosnihan, K.B., Tallant, E.A., Diz, D.I. and Gallagher, P.E. (2005). Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. 111(20): 2605-2610.
  • Lopez, E.O., Parmar, M., Pendela, V.S. and Terrell, J.M. (2020). Lisinopril. In StatPearls: StatPearls Publishing.
  • Faruqi, A. and Jain, A. (2020). Enalapril. In StatPearls: StatPearls Publishing.
  • Danilogorskaya, Y.A., Zheleznykh, E.A., Privalova, E.A., Belenkov, Y.N., Shchendrigina, A.A., Kozhevnikova, M.V., Shakaryants, G.A., Zektser, V.Y., Lishuta, A.S. and Khabarova, N.V. (2020). Vasoprotective Effects of Prolonged Therapy With Perindopril A in Patients with Hypertension Including Concomitant Type 2 Diabetes Mellitus. Kardiologiia. 60(1): 4-9.
  • Hodzic, E., Pecar, E., Dzubur, A., Smajic, E., Hondo, Z., Delic, D. and Rustempasic, E. (2020). Efficacy and Safety of Perindopril in Patients with Essential Hypertension. Materia Socio-Medica. 32(1): 4.
  • Tandan, N. and Cassagnol, M. (2020). Quinapril. In StatPearls: StatPearls Publishing.
  • Deshotels, M.R., Xia, H., Sriramula, S., Lazartigues, E. and Filipeanu, C.M. (2014). Angiotensin-II mediates ACE2 Internalization and Degradation through an Angiotensin-II type I receptor-dependent mechanism. Hypertension. 64(6): 1368-1375.
  • Kramkowski, K., Mogielnicki, A., Leszczynska, A. and Buczko, W. (2010).Angiotensin-(1-9): the product of angiotensin I conversion in platelets, enhances arterial thrombosis in rats. Journal of Physiology and Pharmacology. 61(3): 317.
  • Furuhashi, M., Moniwa, N., Mita, T., Fuseya, T., Ishimura, S., Ohno, K., Shibata, S., Tanaka, M., Watanabe, Y., Akasaka, H., Ohnishi, H., Yoshida, H., Takizawa, H., Saitoh, S., Ura, N., Shimamoto, K. and Miura, T. (2015). Urinary angiotensin-converting enzyme 2 in hypertensive patients may be increased by olmesartan, an angiotensin II receptor blocker. Am. J. Hypertens. 28(1): 15-21.
  • Haller, H., Ito, S., Izzo, J.L. Jr., Januszewicz, A., Katayama, S., Menne, J., Mimran, A., Rabelink, T.J., Ritz, E., Ruilope, L.M., Rump, L.C. and Viberti, G. (2011). Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N. Engl. J. Med. 364(10): 907-17.
  • Yoganand, P.S., Chacko, R., Mishra, R.K.C., Kumar, R.P. and Kundu, S. (2020). Multifacted Tesmisartan: Candidate for New Therapeutic Approaches. Medico Research Chronicles. 7(1): 45-49.
  • Croom, K.F., Curran, M.P., Goa, K.L. and Perry, C.M. (2004). Irbesartan: a review of its use in hypertension and in the management of diabetic nephropathy. Drugs. 64(9): 999-1028.
  • Robles, N., Martín-Águeda, B., López-Muñoz, F., Alamo, C. and Study, I.o.t.E. (2005). Effectiveness and safety of eprosartan on pulse pressure for the treatment of hypertensive patients. International Journal of Clinical Practice. 59(4): 478-484.
  • Scheen, A. (2004). Renin-angiotensin system inhibition prevents type 2 diabetes mellitus: part 2. Overview of physiological and biochemical mechanisms. Diabetes & Metabolism. 30(6): 498-505.
  • Suzuki, K., Nakagawa, O. and Aizawa, Y. (2008). Improved early-phase insulin response after candesartan treatment in hypertensive patients with impaired glucose tolerance. Clinical Experimental Hypertension. 30(5): 309-314.
  • Mohanty, D., Mohapatra, S., Misra, S. and Sahu, P. (2016). Milk derived bioactive peptides and their impact on human health-A review. Saudi Journal of Biological Sciences. 23(5): 577-583.
  • Fujita, H. and Yoshikawa, M. (1999). LKPNM: a prodrug-type ACE-inhibitory peptide derived from fish protein. Immunopharmacology. 44(1-2): 123-127.
  • Li Chan, E.C., Hunag, S.L., Jao, C.L., Ho, K.P. and Hsu, K.C. (2012). Peptides derived from Atlantic salmon skin gelatin as dipeptidyl-peptidase IV inhibitors. Journal of Agricultural Food Chemistry. 60(4): 973-978.
  • Huang, D., Yang, L., Wang, C., Ma, S., Cui, L., Huang, S., Sheng, X., Weng, Q. and Xu, M. (2014). Immunostimulatory activity of protein hydrolysate from oviductus ranae on macrophage in vitro. Evidence-Based Complementary Alternative Medicine. 2014: 180234
  • Siow, H.L. and Gan, C.Y. (2016). Extraction, identification, and structure-activity relationship of antioxidative and α-amylase inhibitory peptides from cumin seeds (Cuminum cyminum). Journal of Functional Foods. 22: 1-12.
  • Lammi, C., Zanoni, C. and Arnoldi, A. (2015). IAVPGEVA, IAVPTGVA, and LPYP, three peptides from soy glycinin, modulate cholesterol metabolism in HepG2 cells through the activation of the LDLR-SREBP2 pathway. Journal of Functional Foods. 14: 469-478.
  • Ibrahim, H.R., Nanbu, F. and Miyata, T. (2021). Potent antioxidant peptides derived from honey major protein enhance tolerance of eukaryotic cells toward oxidative stress. Food Production, Processing and Nutrition. 3(1): 1-10.
  • García-Mora, P., Martín-Martínez, M., Bonache, M.A., González-Múniz, R., Peñas, E., Frias, J. and Martinez-Villaluenga, C. (2017). Identification, functional gastrointestinal stability and molecular docking studies of lentil peptides with dual antioxidant and angiotensin I converting enzyme inhibitory activities. Food Chemistry. 221: 464-472.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.