40
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bioactivities of Phenylpropanoids Extracted from Ephemeral Flowers of Medicinal Woody Species Murraya paniculata (Linn.) Jack

, , &
Pages 353-365 | Received 25 Jun 2022, Accepted 13 Sep 2022, Published online: 28 Sep 2022

References

  • El-Sakhawy, F.S., El-Tantawy, M.E., Ross, S.A. and El-Sohly, M.A. (1998). Composition and Antimicrobial Activity of the Essential Oil of Murraya exotica L. Flavour Fragr. J. 13: 59-62. doi: 10.1002/(SICI)1099-1026(199801/02)13:1<59::AID-FFJ693>3.0.CO;2-L
  • Jiwajinda, S., Santisopasri, V. and Ohigashi, H. (2000). Coumarin-related compounds as plant growth inhibitors from two rutaceous plants in Thailand. Biosci. Biotechnol. Biochem. 64(2): 420-423. doi: 10.1271/bbb.64.420
  • Sharma, S. and Arora, S. (2015). Pharmaceutical activities of phytochemicals in Murraya spp. - a review. J. Pharm. Res. 9: 217-236.
  • Paul, I., Chatterjee, A., Maiti, S., Bhadoria, P.B.S. and Mitra, A. (2019). Dynamic trajectories of volatile and non-volatile specialised metabolites in ‘overnight’ fragrant flowers of Murraya paniculata. Plant Biology. 21: 899-910. doi: 10.1111/plb.12983
  • Paul, I., Dutta, M. and Mitra, A. (2021). Characterization of osmophore activity and secondary metabolite localization in fragrant ephemeral flowers of Murraya paniculata (Linn.) Jack (Rutaceae). Braz. J. Botany. 44: 941-955. doi: 10.1007/s40415-021-00775-z
  • Graf, E. (1992). Antioxidant potential of ferulic acid. Free Radic. Biology Med. 13: 435-448. doi: 10.1016/0891-5849(92)90184-I
  • Ibitoye, O.B. and Ajiboye, T.O. (2019). Ferulic acid potentiates the antibacterial activity of quinolone-based antibiotics against Acinetobacter baumannii. Microb. Pathog. 126: 393-398. doi: 10.1016/j.micpath.2018.11.033
  • Stringlis, I.A., de Jonge, R. and Pieterse, C.M.J. (2019). The Age of Coumarins in Plant-Microbe Interactions. Plant Cell Physiol. 60(7): 1405-1419. doi: 10.1093/pcp/pcz076
  • Prats, E., Bazzalo, M.E., Léon, A. and Jorrín, J.V. (2006). Fungitoxic effect of scopolin and related coumarins on Sclerotinia sclerotiorum. A way to overcome sunflower head rot. Euphytica. 147: 451-460. doi: 10.1007/s10681-005-9045-8
  • Sun, H., Wang, L., Zhang, B., Ma, J., Hettenhausen, C., Cao, G., Sun, G., Wu, J. and Wu, J. (2014). Scopoletin is a phytoalexin against Alternaria alternata in wild tobacco dependent on jasmonate signalling. J. Exp. Botany. 65(15): 4305-4315. doi: 10.1093/jxb/eru203
  • Korkina, L., Kostyuk, V., De Luca, C. and Pastore, S. (2011). Plant Phenylpropanoids as Emerging Anti-Inflammatory Agents. Mini. Rev. Med. Chem. 11: 823-835. doi: 10.2174/138955711796575489
  • Gerin, F., Erman, H., Erboga, M., Sener, U., Yilmaz, A., Seyhan, H. and Gurel, A. (2016). The Effects of Ferulic Acid Against Oxidative Stress and Inflammation in Formaldehyde-Induced Hepatotoxicity. Inflammation, 39(4): 1377-86. doi: 10.1007/s10753-016-0369-4
  • Osman, W.N.W., Lau, S.F. and Mohamed, S. (2017). Scopoletin-standardized Morinda elliptica leaf extract suppressed inflammation and cartilage degradation to alleviate osteoarthritis: A preclinical study. Phytotherapy Res. 2017: 1-8.
  • Bumrungpert, A., Lilitchan, S., Tuntipopipat, S., Tirawanchai, N. and Komindr, S. (2018). Ferulic Acid Supplementation Improves Lipid Profiles, Oxidative Stress, and Inflammatory Status in Hyperlipidemic Subjects: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients. 10: 713. doi: 10.3390/nu10060713
  • Zhao, Y.-L., Yang, X.-W., Wu, B.-F., Shang, J.-H., Liu, Y.-P., Zhi-Dai and Luo, X.-D. (2019). Anti-inflammatory Effect of Pomelo Peel and Its Bioactive Coumarins. J. Agric. Food Chem. 67(32): 8810-8818. doi: 10.1021/acs.jafc.9b02511
  • Bradford, M.M. (1976). A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochem. 72: 248-254. doi: 10.1016/0003-2697(76)90527-3
  • Sircar, D. and Mitra, A. (2008). Evidence for p-hydroxybenzoate formation involving phenylpropanoid sidechain cleavage in hairy roots of Daucus carota. J. Plant Physiol. 165: 1033-1040. doi: 10.1016/j.jplph.2007.05.005
  • Ainsworth, E.A. and Gillespie, K.M. (2007). Estimation of total phenolic content and other oxidation substrate in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2: 875-877. doi: 10.1038/nprot.2007.102
  • Chandra, S., Khan, S., Avula, B., Lata, H., Yang, M.H., El-Sohly, M.A. and Khan, I.A. (2014). Assessment of Total Phenolic and Flavonoid Content, Antioxidant Properties, and Yield of Aeroponically and Conventionally Grown Leafy Vegetables and Fruit Crops: A Comparative Study. Evidence-Based Complementary and Alternative Medicine. 2014: Article ID 253875.
  • Sircar, D., Roychowdhury, A. and Mitra, A. (2007). Accumulation of p-hydroxybenzoic acid in hairy roots of Daucus carota. J. Plant Physiol. 164(10): 1358-1368. doi: 10.1016/j.jplph.2006.08.002
  • Sachan, A., Ghosh, S. and Mitra, A. (2004). An efficient isocratic separation of hydroxycinnamates and their corresponding benzoates from microbial and plant sources by HPLC. Biotechnol. Appl. Biochem. 40(2): 197-200. doi: 10.1042/BA20030224
  • Proestos, C., Sereli, D. and Komaitis, M. (2006). Determination of phenolic compounds in aromatic plants by RP-HPLC and GC-MS. Food Chem. 95(1): 44-52. doi: 10.1016/j.foodchem.2004.12.016
  • Brand-Williams, W., Cuvelier, M.E. and Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT- Food Sci. Technol. 28: 25-30. doi: 10.1016/S0023-6438(95)80008-5
  • Prieto, P., Pineda, M. and Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem. 269: 334-337. doi: 10.1006/abio.1999.4019
  • Oyaizu, M. (1986). Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 44: 307-315.
  • Khatua, S., Dutta, A.K., Chandra, S., Paloi, S., Das, K. and Acharya, K. (2017). Introducing a novel mushroom from mycophagy community with emphasis on biomedical potency. PloS ONE. 12: e0178050. doi: 10.1371/journal.pone.0178050
  • Hemaiswarya, S. and Doble, M. (2010). Synergistic interaction of phenylpropanoids with antibiotics against bacteria. J. Med. Microbiol. 59: 1469-1476. doi: 10.1099/jmm.0.022426-0
  • Shi, C., Zhang, X., Sun, Y., Yang, M., Song, K., Zheng, Z., Chen, Y., Liu, X., Jia, Z., Dong, R., Cui, L. and Xia, X. (2016). Antimicrobial Activity of Ferulic Acid Against Cronobacter sakazakii and Possible Mechanism of Action. Foodborne Pathog. Dis. 13(4): 196-204. doi: 10.1089/fpd.2015.1992
  • Wang, X., Li, X. and Chen, D. (2011). Evaluation of Antioxidant Activity of Isoferulic Acid in vitro. Nat. Product Communications 6(9): 1285-1288.
  • Ahmadi, N., Mohamed, S., Rahman, H.S. and Rosli, R. (2019). Epicatechin and scopoletin-rich Morinda citrifolia leaf ameliorated leukemia via anti-inflammatory, anti-angiogenesis, and apoptosis pathways in vitro and in vivo. J. Food Biochem. 2019: e12868.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.