20
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of in vitro Simulated Poultry Digestion on Bioaccessibility of Quercetin 3-D-galactoside and Antioxidants from Moringa oleifera Leaf Extracts

, &
Pages 238-255 | Received 12 May 2023, Accepted 14 Jun 2023, Published online: 24 Aug 2023

References

  • STATISTA. (2022). Online statistical database: Projected poultry meat consumption worldwide from 2021 to 2031. https://www.statista.com/statistics/739951/poultry-meat-consumption-worldwide/ (Accessed on September 24, 2022).
  • Movahhedkhah, S., Rasouli, B., Seidavi, A., Mazzei, D., Laudadio, V., Tufarelli, V. (2019). Summer savory (Satureja hortensis L.) extract as natural feed additive in broilers: Effects on growth, plasma constituents, immune response, and ileal microflora. Animals. 9(3): 87. doi: 10.3390/ani9030087
  • Mahfuz, S., Piao, X.S. (2019). Application of Moringa (Moringa oleifera) as natural feed supplement in poultry diets. Animals. 9(7): 431. doi: 10.3390/ani9070431
  • Mahfuz S, Song H, Wei J, Chen M, Zhen D, Nahar J, Liu Z. (2018). Organic egg production, egg quality, calcium utilization, and digestibility in laying hens fed with mushroom (Flammulina velutipes) stem waste. Brazilian Journal of Poultry Science. 20(4): 717-724. doi: 10.1590/1806-9061-2018-0756
  • Sampaio, G.R., Saldanha, T., Soares, R.A.M, Torres, E.A.F.S. (2012). Effect of natural antioxidant combinations on lipid oxidation in cooked chicken meat during refrigerated storage. Food Chemistry. 135(3): 1383-1390. doi: 10.1016/j.foodchem.2012.05.103
  • Karthivashan, G., Arulselvan, P., Alimon, A.R., Safinar, I.I., Fakurazi, S. (2015). Competing role of bioactive constituents in Moringa oleifera extract and conventional nutrition feed on the performance of cobb 500 broilers. BioMed Research International. 2015(970398): 1-13. doi: 10.1155/2015/970398
  • Gopalakrishnan, L., Doriya, K., Kumar, D.S. (2016). Moringa oleifera: A review on nutritive importance and its medicinal application. Food Science and Human Wellness. 5(2): 49-56. doi: 10.1016/j.fshw.2016.04.001
  • Falowo, A.B., Mukumbo, F.E., Idamokoro, E.M., Lorenzo, J.M., Afolayan, A.J., Muchenje, V. (2018). Multi-functional application of Moringa oleifera Lam. in nutrition and animal food products: A review. Food Research International. 106: 317-334. doi: 10.1016/j.foodres.2017.12.079
  • Mendieta-Araica, B., Spörndly, R., Reyes-Sánchez, N., Spörndly, E. (2011). Moringa (Moringa oleifera) leaf meal as a source of protein in locally produced concentrates for dairy cows fed low protein diets in tropical areas. Livestock Science. 137(2011): 10-17. doi: 10.1016/j.livsci.2010.09.021
  • Moyo, B., Oyedemi, S., Masika, P.J., Muchenje, V. (2012). Polyphenolic content and antioxidant properties of Moringa oleifera leaf extracts and enzymatic activity of liver from goats supplemented with Moringa oleifera leaves/sunflower seed cake. Meat Science. 91(4): 441-447. doi: 10.1016/j.meatsci.2012.02.029
  • Khan, R.U., Khan, A., Naz, S., Ullah, Q., Laudadio, V., Tufarelli, V., Ragni, M. (2021). Potential applications of Moringa oleifera in poultry health and production as alternative to antibiotics: A review. Antibiotics. 10(12): 1540. doi: 10.3390/antibiotics10121540
  • Abd El-Hack, M.E., Alqhtani, A.H., Swelum, A.A., El-Saadony, M.T., Salem, H.M., Babalghith, A.O., Taha, A.E., Ahmed, O., Abdo, M., El-Tarabily, K.A. (2022). Pharmacological, nutritional and antimicrobial uses of Moringa oleifera Lam. leaves in poultry nutrition: An updated knowledge. Poultry Science. 101(9): 102031. doi: 10.1016/j.psj.2022.102031
  • Prabakaran, M., Kim, S.-H., Sasireka, A., Chandrasekaran, M. and Chung, I.-M. (2018). Polyphenol composition and antimicrobial activity of various solvent extracts from different plant parts of Moringa oleifera. Food Bioscience. 26, 23-29. doi: 10.1016/j.fbio.2018.09.003
  • Hassan, M. A., Xu, T., Tian, Y., Zhong, Y., Ali, F.A.Z., Yang, X. and Lu, B. (2021). Health benefits and phenolic compounds of Moringa oleifera leaves: A comprehensive review. Phytomedicine. 93: 153771. doi: 10.1016/j.phymed.2021.153771
  • Fahey, J.W., Zalcmann, A.T. and Talalay, P. (2001). The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry. 56(1), 5-51. doi: 10.1016/S0031-9422(00)00316-2
  • Xu, S., Chen, S., Xia, W., Sui, H., Fu, X. (2022). Hyperoside: A review of its structure, synthesis, pharmacology, pharmacokinetics and toxicity. Molecules. 27(9): 3009. doi: 10.3390/molecules27093009
  • Mabrouki, L., Rjeibi, I., Taleb, J., Zourgui, L. (2020). Cardiac ameliorative effect of Moringa oleifera leaf extract in high-fat diet-induced obesity in rat model. BioMed Research International. 2020(6583603): 1-10. doi: 10.1155/2020/6583603
  • Quan, N.V., Thien, D.D., Khanh, T.D., Tran, H.D., Xuan, T.D. (2019). Momilactones A, B, and tricin in rice grain and by-products are potential skin aging inhibitors. Foods. 8(12): 602. doi: 10.3390/foods8120602
  • Quan, N.V., Xuan, T.D., Tran, H.D., Thuy, N.T.D., Trang, L.T., Huong, C.T., Andriana, Y., Tuyen, P.T. (2019c). Anti-oxidant, α-amylase and α-glucosidase inhibitory activities and potential constituents of Canarium tramdenum bark. Molecules. 24(3): 605. doi: 10.3390/molecules24030605
  • Quan, N.V., Xuan, T.D., Anh, L.H., Tran, H.D. (2019). Bio-guided isolation of prospective bioactive constituents from roots of Clausena indica (Dalzell) Oliv. Molecules. 24(24): 4442. doi: 10.3390/molecules24244442
  • Tuyen, P.T., Xuan, T.D., Khang, D.T., Ahmad, A., Quan, N.V., Tu Anh, T., Anh, L.H., Minh, T.N. (2017). Phenolic compositions and antioxidant properties in bark, flower, inner skin, kernel and leaf extracts of Castanea crenata Sieb. et Zucc. Antioxidants. 6(2): 31. doi: 10.3390/antiox6020031
  • Menezes-Blackburn, D., Gabler, S., Greiner, R. 2015. Performance of seven commercial phytases in an in vitro simulation of poultry digestive tract. Journal of Agricultural and Food Chemistry. 63(27): 6142-6149. doi: 10.1021/acs.jafc.5b01996
  • Surai, P.F., Kochish, I.I., Fisinin, V.I., Kidd, M.T. (2019). Antioxidant defence systems and oxidative stress in poultry biology: An update. Antioxidants. 8(7): 235. doi: 10.3390/antiox8070235
  • Pollini, L., Tringaniello, C., Ianni, F., Blasi, F., Manes, J., Cossignani, L. (2020). Impact of ultrasound extraction parameters on the antioxidant properties of Moringa oleifera leaves. Antioxidants. 9(4): 277. doi: 10.3390/antiox9040277
  • Lal, M., Begum, T., Gogoi, R., Sarma, N., Munda, S., Pandey, S.K., Baruah, J., Tamang, R., Saikia, S. (2022). Anethole rich Clausena heptaphylla (Roxb.) Wight & Arn., essential oil pharmacology and genotoxic efficiencies. Scientific Reports. 12: 9978. doi: 10.1038/s41598-022-13511-8
  • Begum, T., Gogoi, R., Sarma, N., Pandey, S.K., Lal, M. (2023). Novel ethyl p-methoxy cinnamate rich Kaempferia galanga (L.) essential oil and its pharmacological applications: special emphasis on anticholinesterase, anti-tyrosinase, α-amylase inhibitory, and genotoxic efficiencies. PeerJ. 11: e14606. doi: 10.7717/peerj.14606
  • Mota de Carvalho, N., Oliveira, D.L., Saleh, M.A.D., Pintado, M.E., Madureira, A.R. (2021). Importance of gastrointestinal in vitro models for the poultry industry and feed formulations. Animal Feed Science and Technology. 271(2021): 114730. doi: 10.1016/j.anifeedsci.2020.114730
  • Changxing, L., Chenling, M., Alagawany, M., Jianhua, L., Dongfang, D., Gaichao, W., Wenyin, Z., Syed, S.F., Arain, M.A., Saeed, M., Hassan, F.U., Chao, S. (2018). Health benefits and potential applications of anthocyanins in poultry feed industry. World's Poultry Science Journal. 74(2): 251-264. doi: 10.1017/S0043933918000053
  • Yatao, X., Saeed, M., Kamboh, A.A., Arain, M.A., Ahmad, F., Suheryani, I., Abd El-Hack, M.E., Alagawany, M., Shah, Q.A., Chao, S. (2018). The potentially beneficial effects of supplementation with hesperidin in poultry diets. World's Poultry Science Journal. 74(2): 265-276. doi: 10.1017/S0043933917001088
  • Rafiei, F., Khajali, F. (2021). Flavonoid anti-oxidants in chicken meat production: Potential application and future trends. World's Poultry Science Journal. 77(2): 347-361. doi: 10.1080/00439339.2021.1891401
  • Gu, N., Qiu, C., Zhao, L., Zhang, L., Pei, J. (2021). Efficient production hyperoside from quercetin in Escherichia coli through increasing UDP-galactose supply and recycling of resting cell. Catalysis Letters. 151: 1202-1211. doi: 10.1007/s10562-020-03373-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.