32
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Unveiling the potential of Cepharanthine from plant to patient- A comprehensive review of phytochemistry, pharmacology and clinical investigations

, , &
Pages 1-34 | Received 18 Dec 2023, Accepted 26 Jan 2024, Published online: 18 Mar 2024

References

  • Izzo, A.A., Teixeira, M., Alexander, S.P.H., Cirino, G., Docherty, J.R., George, C.H., Insel, P.A., Ji, Y., Kendall, D.A., Panattieri, R.A., Sobey, C.G., Stanford, S.C., Stefanska, B., Stephens, G., Ahluwalia, A. (2020). A practical guide for transparent reporting of research on natural products in the British Journal of Pharmacology: Reproducibility of natural product research. Br. J. Pharmacol. 177(10): 2169-2178.
  • Semwal, D.K., Badoni, R., Semwal, R., Kothiyal, S.K., Singh, G.J.P., Rawat, U. (2010). The genus Stephania (Menispermaceae): Chemical and pharmacological perspectives. J. Ethnopharmacol. 132(2): 369-383.
  • Desgrouas, C., Taudon, N., Bun, S.S., Baghdikian, B., Bory, S., Parzy, D., Ollivier, E. (2014). Ethnobotany, phytochemistry and pharmacology of Stephania rotunda Lour. J. Ethnopharmacol. 154(3): 537-563.
  • Hong, L., Guo, Z., Huang, K., Wei, S., Liu, B., Meng, S., Long, C. (2015). Ethnobotanical study on medicinal plants used by Maonan people in China. J. Ethnobiol. Ethnomed. 11(1): 1-35.
  • Patra, A., Freyer, A.J., Shamma, M., Guinaudeau, H., Tantisewie, B., Pharadai, K. (1986). The Bisbenzylisoquinoline Alkaloids of Stephania Suberosa. J. Nat. Prod. 49(3): 424-427.
  • Lv, J.J., Xu, M., Wang, D., Zhu, H.T., Yang, C.R., Wang, Y.F., Li, Y., Zhang, Y.J. (2013). Cytotoxic bisbenzylisoquinoline alkaloids from Stephania epigaea. J. Nat. Prod. 76(5): 926-932.
  • Tantisewie, B., Amurrio, S., Guinaudeau, H., Shamma, M. (1989). New Bisbenzylisoquinolines from Stephania pierrii. J. Nat. Prod. 52(4): 846-851.
  • Haddaway, N.R., Page, M.J., Pritchard, C.C., McGuinness, L.A. (2022). PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Syst. Rev. 18(2).
  • Bailly, C. (2019). Cepharanthine: An update of its mode of action, pharmacological properties and medical applications. Phytomedicine. 62: 152956.
  • Rogosnitzky, M., Danks, R. (2011). Therapeutic potential of the biscoclaurine alkaloid, cepharan-thine, for a range of clinical conditions. Pharm-acol. Reports. 63(2): 337-347.
  • Liang, D., Li, Q., Du, L., Dou, G. (2022). Pharmacological Effects and Clinical Prospects of Cepharanthine. Molecules. 27(24): 8933.
  • Weber, C., Opatz, T. (2019). Bisbenzyliso-quinoline Alkaloids. lkaloids Chem. Biol. 81: 1-114.
  • Wang, Y., Zhou, X., Wei, S., Wang, G., Xi, J. (2023). Current status and future challenges in extraction, purification and identification of Cepharanthine (a potential drug against COVID-19). Sep. Purif. Technol. 309: 123038.
  • Kikukawa, Y., Okuno, Y., Tatetsu, H., Nakamura, M., Harada, N., Ueno, S., Kamizaki, Y., Mitsuya, H., Hata, H. (2008). Induction of cell cycle arrest and apoptosis in myeloma cells by cepharanthine, a biscoclaurine alkaloid. Int. J. Oncol. 33(4): 807-14. http://www.ncbi.nlm.nih.gov/pubmed/18813795
  • Rogosnitzky, M., Okediji, P., Koman, I. (2020). Cepharanthine: a review of the antiviral potential of a Japanese-approved alopecia drug in COVID-19. Pharmacol. Reports. 72(6): 1509-1516.
  • Deng, Y., Wu, W., Ye, S., Wang, W., Wang, Z. (2017). Determination of cepharanthine in rat plasma by LC–MS/MS and its application to a pharmacokinetic study. Pharm. Biol. 55(1): 1775-1779.
  • Jain, D., Hossain, R., Ahmed Khan, R., Dey, D., Rahman Toma, T., Torequl Islam, M., Janmeda, P., Rehman Hakeem, K. (2021). Computer-aided Evaluation of Anti-SARS-CoV-2 (3-chymotrypsin-like Protease and Trans-membrane Protease Serine 2 Inhibitors) Activity of Cepharanthine: An In silico Approach. Biointerface Res. Appl. Chem. 12(1): 768-780.
  • Cepharanthine oral disintegration tablet and its preparing method. (2005). https://patents.google.com/patent/CN100387226C/en
  • Zhao, W., Yao, D., Yang, R., Huo, H., Qin, C., Sun, K. (2021). A molecular docking study: Cepharanthine protects articular cartilage against arthritis by Wnt/PI3K/TLR-3 signaling. Arab. J. Chem. 14(2): 102883.
  • Aota, K., Yamanoi, T., Kani, K., Azuma, M. (2018). Cepharanthine Inhibits IFN-γ-Induced CXCL10 by Suppressing the JAK2/STAT1 Sig-nal Pathway in Human Salivary Gland Ductal Cells. Inflammation. 41(1): 50-58.
  • Kudo, K., Hagiwara, S., Hasegawa, A., Kusaka, J., Koga, H., Noguchi, T. (2011). Cepharanthine Exerts Anti-Inflammatory Effects Via NF-κB Inhibition in a LPS-Induced Rat Model of Systemic Inflammation. J. Surg. Res. 171(1): 199-204.
  • Huang, H., Hu, G., Wang, C., Xu, H., Chen, X., Qian, A. (2014). Cepharanthine, an Alkaloid from Stephania cepharantha Hayata, Inhibits the Inflammatory Response in the RAW264.7 Cell and Mouse Models. Inflammation. 37(1): 235-246.
  • Ershun, Z., Yunhe, F., Zhengkai, W., Yongguo, C., Naisheng, Z., Zhengtao, Y. (2014). Cepharanthine Attenuates Lipopolysaccharide-Induced Mice Mastitis by Suppressing the NF-κB Signaling Pathway. Inflammation. 37(2): 331-337.
  • Gao, S., Zhou, L., Lu, J., Fang, Y., Wu, H., Xu, W., Pan, Y., Wang, J., Wang, X., Zhang, J., Shao, A. (2022). Cepharanthine Attenuates Early Brain Injury after Subarachnoid Hemorrhage in Mice via Inhibiting 15-Lipoxygenase-1-Mediated Microglia and Endothelial Cell Ferroptosis.Tang H, editor. Oxid. Med. Cell. Longev. 2022: 1-16.
  • Cierluk, K., Szlasa, W., Rossowska, J., Tarek, M., Szewczyk, A., Saczko, J., Kulbacka, J. (2020). Cepharanthine induces ROS stress in glioma and neuronal cells via modulation of VDAC permeability. Saudi Pharm. J. 28(11): 1364-1373.
  • Chen, M.L., Gou, J.M., Meng, X.L., Chen, C.L., Liu, X.N. (2019). Cepharanthine, a bisbenzylisoquinoline alkaloid, inhibits lipopoly-saccharide-induced microglial activation. Pharmazie. 74(10): 606-610.
  • Wu, Y., Cao, Y., Wang, S., Xu, X., Wang, M. (2019). Cepharanthine promotes the effect of dexmedetomidine on the deposition of β-amyloid in the old age of the senile dementia rat model by regulating inflammasome expression. Folia Neuropathol. 57(4): 348-356.
  • Liu, Y., Tang, Q., Rao, Z., Fang, Y., Jiang, X., Liu, W., Luan, F., Zeng, N. (2021). Inhibition of herpes simplex virus 1 by cepharanthine via promoting cellular autophagy through up-regulation of STING/TBK1/P62 pathway. Antiviral Res. 193: 105143.
  • Liu, Y., Chen, L., Liu, W., Li, D., Zeng, J., Tang, Q., Zhang, Y., Luan, F., Zeng, N. (2021). Cepharanthine Suppresses Herpes Simplex Virus Type 1 Replication Through the Downregulation of the PI3K/Akt and p38 MAPK Signaling Pathways. Front. Microbiol. 12: 3685.
  • Baba, M., Okamoto, M., Kashiwaba, N., Ono, M. (2001). Anti-HIV-1 activity and structure-activity relationship of cepharanoline derivatives in chronically infected cells. Antivir. Chem. Chemother. 12(5): 307-312.
  • Phumesin, P., Panaampon, J., Kariya, R., Limjindaporn, T., Yenchitsomanus, P., Okada, S. (2023). Cepharanthine inhibits dengue virus production and cytokine secretion. Virus Res. 325: 199030.
  • Wei, J., Pan, S., Liu, S., Qian, B., Shen, Z., Zhang, Y., Bian, Y., ABuduaini, Ad., Dong, F., Zhang, X., et al. (2023). Safety and Efficacy of Oral administrated Cepharanthine in Non-hospitalized, asymptomatic or mild COVID-19 patients: A Double-blind, Randomized, Placebo-controlled Trial. medRxiv. 1-21.
  • Fan, H., He, S., Han, P., Hong, B., Liu, K., Li, M., Wang, S., Tong, Y. (2022). Cepharanthine: A Promising Old Drug against SARS-CoV-2. Adv. Biol. 6(12).
  • Jiang, P., Ye, J., Jia, M., Li, X., Wei, S., Li, N. (2022). The common regulatory pathway of COVID-19 and multiple inflammatory diseases and the molecular mechanism of cepharanthine in the treatment of COVID-19. Front. Pharmacol. 13: 960267.
  • Samra, Y.A., Said, H.S., Elsherbiny, N.M., Liou, G.I., El-Shishtawy, M.M., Eissa, L.A. (2016). Cepharanthine and Piperine ameliorate diabetic nephropathy in rats: role of NF-κB and NLRP3 inflammasome. Life Sci. 157: 187-199.
  • Kuna, L., Jakab, J., Smolic, R., Raguz-Lucic, N., Vcev, A., Smolic, M. (2019). Peptic Ulcer Disease: A Brief Review of Conventional Therapy and Herbal Treatment Options. J. Clin. Med. 8(2): 179.
  • Zhang, M.-N., Xie, R., Wang, H.-G., Wen, X., Wang, J.-Y., He, L., Zhang, M.-H., Yang, X.-Z. (2023). Cepharanthine Alleviates DSS-Induced Ulcerative Colitis via Regulating Aconitate Decarboxylase 1 Expression and Macrophage Infiltration. Molecules. 28(3): 1060.
  • Wang, H.G., Zhang, M.N., Wen, X., He, L., Zhang, M.H., Zhang, J.L., Yang, X.Z. (2022). Cepharanthine ameliorates dextran sulphate sodium-induced colitis through modulating gut microbiota. Microb. Biotechnol. 15(8): 2208-2222.
  • Shen, S., Prame Kumar, K., Stanley, D., Moore, R.J., Van, T.T.H., Wen, S.W., Hickey, M.J., Wong, C.H.Y. (2018). Invariant Natural Killer T Cells Shape the Gut Microbiota and Regulate Neutrophil Recruitment and Function During Intestinal Inflammation. Front. Immunol. 9: 999.
  • Hosomi, S., Oshitani, N., Kamata, N., Sogawa, M., Okazaki, H., Tanigawa, T., Yamagami, H., Watanabe, K., Tominaga, K., Watanabe, T., Fujiwara, Y., Maeda, K., Hirakawa, K., Arakawa, T. (2011). Increased numbers of immature plasma cells in peripheral blood specifically overexpress chemokine receptor CXCR3 and CXCR4 in patients with ulcerative colitis. Clin. Exp. Immunol. 163(2): 215-224.
  • He, J., Song, Y., Li, G., Xiao, P., Liu, Y., Xue, Y., Cao, Q., Tu, X., Pan, T., Jiang, Z., Cao, X., Lai, L., Wang, Q. (2019). Fbxw7 increases CCL2/7 in CX3CR1hi macrophages to promote intestinal inflammation. J. Clin. Invest. 129(9): 3877-3893.
  • Iijima, N., Mattei, L.M., Iwasaki, A. (2011). Recruited inflammatory monocytes stimulate antiviral Th1 immunity in infected tissue. Proc. Natl. Acad. Sci. 108(1): 284-289.
  • Billmeier, U., Dieterich, W., Neurath, M.F., Atreya, R. (2016). Molecular mechanism of action of anti-tumor necrosis factor antibodies in inflammatory bowel diseases. World J. Gastroenterol. 22(42): 9300.
  • Vancheri, C., Failla, M., Crimi, N., Raghu, G. (2010). Idiopathic pulmonary fibrosis: a disease with similarities and links to cancer biology. Eur. Respir. J. 35(3): 496-504.
  • Aimo, A., Spitaleri, G., Nieri, D., Tavanti, L.M., Meschi, C., Panichella, G., Lupón, J., Pistelli, F., Carrozzi, L., Bayes-Genis, A., Emdin, M. (2022). Pirfenidone for Idiopathic Pulmonary Fibrosis and Beyond. Card. Fail. Rev. 8: e12.
  • Liu, P., Miao, K., Zhang, L., Mou, Y., Xu, Y., Xiong, W., Yu, J., Wang, Y. (2020). Curdione ameliorates bleomycin-induced pulmonary fibrosis by repressing TGF-β-induced fibroblast to myofibroblast differentiation. Respir. Res. 21(1): 1-10.
  • Chen, G., Li, J., Liu, H., Zhou, H., Liu, M., Liang, D., Meng, Z., Gan, H., Wu, Z., Zhu, X., Han, P., Liu, T., Gu, R., Liu, S., Dou, G. (2023). Cepharanthine Ameliorates Pulmonary Fibrosis by Inhibiting the NF-κB/NLRP3 Pathway, Fibroblast-to-Myofibroblast Transition and Inflammation. Molecules. 28(2): 753.
  • Fuster, J.J., Fernández, P., González-Navarro, H., Silvestre, C., Nabah, Y.N.A., Andrés, V. (2010). Control of cell proliferation in atherosclerosis: insights from animal models and human studies. Cardiovasc. Res. 86(2): 254-264.
  • Paudel, K.R., Karki, R., Kim, D.-W. (2016). Cepharanthine inhibits in vitro VSMC proliferation and migration and vascular inflammatory responses mediated by RAW264.7. Toxicol. Vitr. 34: 16-25.
  • Baker, C.S.R., Hall, R.J.C., Evans, T.J., Pomerance, A., Maclouf, J., Creminon, C., Yacoub, M.H., Polak, J.M. (1999). Cyclooxygenase-2 is widely expressed in atherosclerotic lesions affecting native and transplanted human coronary arteries and colocalizes with inducible nitric oxide synthase and nitrotyrosine particularly in macrophages. Arterioscler. Thromb. Vasc. Biol. 19(3): 646-655.
  • Li, P.-C., Sheu, M.-J., Ma, W.-F., Pan, C.-H., Sheu, J.-H., Wu, C.-H. (2015). Anti-Restenotic Roles of Dihydroaustrasulfone Alcohol Involved in Inhibiting PDGF-BB-Stimulated Proliferation and Migration of Vascular Smooth Muscle Cells. Mar. Drugs. 13(5): 3046-3060.
  • Kalogeris, T., Baines, C.P., Krenz, M., Korthuis, R.J. (2012). Cell Biology of Ischemia/Reperfusion Injury. Int. Rev. Cell Mol. Biol. 298: 229-317.
  • Kusaka, J., Hagiwara, S., Hasegawa, A., Kudo, K., Koga, H., Noguchi, T. (2011). Cepharanthine Improves Renal Ischemia-Reperfusion Injury in Rats. J. Surg. Res. 171(1): 212-217.
  • Kao, M.C., Yang, C.H., Chou, W.C., Sheu, J.R., Huang, C.J. (2015). Cepharanthine mitigates lung injury in lower limb ischemia–reperfusion. J. Surg. Res. 199(2): 647-656.
  • Zhao, J., Piao, X., Wu, Y., Liang, S., Han, F., Liang, Q., Shao, S., Zhao, D. (2020). Cepharanthine attenuates cerebral ischemia/reperfusion injury by reducing NLRP3 inflammasome-induced inflammation and oxidative stress via inhibiting 12/15-LOX signaling. Biomed. Pharmacother. 127: 110151.
  • Chang, Y.K., Huang, S.C., Kao, M.C., Huang, C.J. (2016). Cepharanthine alleviates liver injury in a rodent model of limb ischemia–reperfusion. Acta Anaesthesiol. Taiwanica. 54(1):1 1-15.
  • Iqbal, A., Najam, R., Simjee, S., Athar Ishaqui, A., Ashfaq Ahmad, S., Ahmed, Z., Ahmed, S., Ahmed, S., Jaweed, L., Maboos, M., Muhammad Uzairullah, M., Jabeen, S., Imran, M. (2022). Cepharanthine action in preventing obesity and hyperlipidemia in rats on a high-fat high sucrose diet. Saudi Pharm. J. 30(12): 1683-1690.
  • Zhou, P., Li, Z., Xu, D., Wang, Y., Bai, Q., Feng, Y., Su, G., Chen, P., Wang, Y., Liu, H., Wang, X., Zhang, R., Wang, Y. (2019). Cepharanthine Hydrochloride Improves Cisplatin Chemotherapy and Enhances Immunity by Regulating Intestinal Microbes in Mice. Front. Cell. Infect. Microbiol. 9: 225.
  • Uto, T., Nishi, Y., Toyama, M., Yoshinaga, K., Baba, M. (2011). Inhibitory effect of cepharanthine on dendritic cell activation and function. Int. Immunopharmacol. 11(11): 1932–1938
  • Zhou, C., Meng, J., Yang, Y., Hu, B., Hong, J., Lv, Z., Chen, K., Heng, B.C., Jiang, G., Zhu, J., Cheng, Z., Zhang, W., Cao, L., Wang, W., Shen, W., Yan, S., Wu, H. (2018). Cepharanthine Prevents Estrogen Deficiency-Induced Bone Loss by Inhibiting Bone Resorption. Front. Pharmacol. 9: 210.
  • Karki, R., Man, S.M., Malireddi, R.K.S., Kesavardhana, S., Zhu, Q., Burton, A.R., Sharma, B.R., Qi, X., Pelletier, S., Vogel, P., Rosenstiel, P., Kanneganti, T.-D. (2016). NLRC3 is an inhibitory sensor of PI3K–mTOR pathways in cancer. Nature. 540(7634): 583-587.
  • Baron, R., Neff, L., Roy, C., Boisvert, A., Caplan, M. (1986). Evidence for a high and specific concentration of (Na+,K+)ATPase in the plasma membrane of the osteoclast. Cell. 46(2): 311-320.
  • Lin, X., Song, F., Zhou, L., Wang, Z., Wei, C., Xu, J., Zhao, J., Liu, Q. (2019). Cepharanthine suppresses osteoclast formation by modulating the nuclear factor-κB and nuclear factor of activated T-cell signaling pathways. J. Cell. Biochem. 120(2): 1990-1996.
  • Lun E. Hon, K., K.C. Leung, A. (2011). Alopecia Areata. Recent Pat. Inflamm. Allergy Drug Discov. 5(2): 98-107.
  • Ou, H.C., Cunningham, L.L., Francis, S.P., Brandon, C.S., Simon, J.A., Raible, D.W., Rubel, E.W. (2009). Identification of FDA-Approved Drugs and Bioactives that Protect Hair Cells in the Zebrafish (Danio rerio) Lateral Line and Mouse (Mus musculus) Utricle. J. Assoc. Res. Otolaryngol. 10(2): 91-203.
  • Inui, S., Itami, S. (2013). Induction of insulin-like growth factor-I by cepharanthine from dermal papilla cells: a novel potential pathway for hair growth stimulation. J. Dermatol. 40(12): 1054-1055.
  • Inui, S., Tohyama, C., Itami, S. (2016). Acceleration of Hair Growth Rate by Topical Liposomal Cepharanthine in Male Androgenetic Alopecia. Hair Ther. Transplant. 06(02): 145.
  • Carbone, A. (2020). Cancer Classification at the Crossroads. Cancers (Basel). 12(4):980.
  • Saini, A., Kumar, M., Bhatt, S., Saini, V. (2020). Cancer Causes and Treatments. Int. J. Pharm. Sci. Res. 11(7): 3121-3134.
  • Siegel, R.L., Miller, K.D., Wagle, N.S., Jemal, A. (2023). Cancer statistics, 2023. CA. Cancer J. Clin. 73(1): 17-48.
  • American Cancer Society. (2018). Global Cancer Facts & Figures 4th Edition. Atlanta: American Cancer Society.
  • Debela, D.T., Muzazu, S.G.Y., Heraro, K.D., Ndalama, M.T., Mesele, B.W., Haile, D.C., Kitui, S.K., Manyazewal, T. (2021). New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 9: 205031212110343.
  • Shahriyar, S., Woo, S., Seo, S., Min, K., Kwon, T. (2018). Cepharanthine Enhances TRAIL-Mediated Apoptosis Through STAMBPL1-Mediated Downregulation of Survivin Expression in Renal Carcinoma Cells. Int. J. Mol. Sci. 19(10): 3280.
  • Xu, W., Wang, X., Tu, Y., Masaki, H., Tanaka, S., Onda, K., Sugiyama, K., Yamada, H., Hirano, T. (2019). Tetrandrine and cepharanthine induce apoptosis through caspase cascade regulation, cell cycle arrest, MAPK activation and PI3K/Akt/mTOR signal modification in glucocorticoid resistant human leukemia Jurkat T cells. Chem. Biol. Interact. 310: 108726.
  • Huang, C.Z., Wang, Y.F., Zhang, Y., Peng, Y.M., Liu, Y.X., Ma, F., Jiang, J.H., Wang, Q.D. (2017). Cepharanthine hydrochloride reverses P-glycoprotein-mediated multidrug resistance in human ovarian carcinoma A2780/Taxol cells by inhibiting the PI3K/Akt signaling pathway. Oncol. Rep. 38(4): 2558-2564.
  • Zhu, Q., Guo, B., Chen, L., Ji, Q., Liang, H., Wen, N., Zhang, L. (2017). Cepharanthine exerts antitumor activity on choroidal melanoma by reactive oxygen species production and c-Jun N-terminal kinase activation. Oncol. Lett. 13(5): 3760-3766.
  • Li, G., Qiao, K., Xu, X., Wang, C. (2022). Cepharanthine Regulates Autophagy via Activating the p38 Signaling Pathway in Lung Adenocarcinoma Cells. Anticancer. Agents Med. Chem. 22(8): 1523-1529.
  • Gui-Feng, S., Ze-Xiu, H., Deng-Liang, H., Peng-Xiao, C., Yao, W., Yi-Fei, W. (2022). Cepharanthine hydrochloride inhibits the Wnt/β-catenin/Hedgehog signaling axis in liver cancer. Oncol. Rep. 47(4): 1-11.
  • Zhang, X., Zhang, G., Zhao, Z., Xiu, R., Jia, J., Chen, P., Liu, Y., Wang, Y., Yi, J. (2021). Cepharanthine, a novel selective ANO1 inhibitor with potential for lung adenocarcinoma therapy. Biochim. Biophys. Acta - Mol. Cell Res. 1868(12): 119132.
  • Feng, F., Pan, L., Wu, J., Li, L., Xu, H., Yang, L., Xu, K., Wang, C. (2021). Cepharanthine inhibits hepatocellular carcinoma cell growth and proliferation by regulating amino acid metabolism and suppresses tumorigenesis in vivo. Int. J. Biol. Sci. 17(15): 4340-4352.
  • Payon, V., Kongsaden, C., Ketchart, W., Mutirangura, A., Wonganan, P. (2019). Mecha-nism of Cepharanthine Cytotoxicity in Human Ovarian Cancer Cells. Planta Med. 85(1): 41-47.
  • Weiss, D.S., Raupach, B., Takeda, K., Akira, S., Zychlinsky, A. (2004). Toll-Like Receptors Are Temporally Involved in Host Defense. J. Immunol. 172(7): 4463-4469.
  • Tang, Z.H., Cao, W.X., Guo, X., Dai, X.Y., Lu, J.H., Chen, X., Zhu, H., Lu, J.J. (2018). Identification of a novel autophagic inhibitor cepharanthine to enhance the anti-cancer property of dacomitinib in non-small cell lung cancer. Cancer Lett. 412: 1-9.
  • Kwon, H.J., Abi-Mosleh, L., Wang, M.L., Deisenhofer, J., Goldstein, J.L., Brown, M.S., Infante, R.E. (2009). Structure of N-Terminal Domain of NPC1 Reveals Distinct Subdomains for Binding and Transfer of Cholesterol. Cell. 137(7): 1213-1224.
  • Liu, L., Parent, C.A. (2011). TOR kinase complexes and cell migration. J. Cell Biol. 194(6): 815-824.
  • Lyu, J., Yang, E.J., Head, S.A., Ai, N., Zhang, B., Wu, C., Li, R.-J., Liu, Y., Yang, C., Dang, Y., Kwon, H.J., Ge, W., Liu, J.O., Shim, J.S. (2017). Pharmacological blockade of cholesterol trafficking by cepharanthine in endothelial cells suppresses angiogenesis and tumor growth. Cancer Lett. 409: 91-103.
  • Rattanawong, A., Payon, V., Limpanasittikul, W., Boonkrai, C., Mutirangura, A., Wonganan, P. (2018). Cepharanthine exhibits a potent anticancer activity in p53-mutated colorectal cancer cells through upregulation of p21Waf1/Cip1. Oncol. Rep. 39(1): 227-238.
  • Unson, S., Kongsaden, C., Wonganan, P. (2020). Cepharanthine combined with 5-fluorouracil inhibits the growth of p53-mutant human colorectal cancer cells. J. Asian Nat. Prod. Res. 22(4): 370-385.
  • Gao, S., Li, X., Ding, X., Qi, W., Yang, Q. (2017). Cepharanthine Induces Autophagy, Apoptosis and Cell Cycle Arrest in Breast Cancer Cells. Cell. Physiol. Biochem. 41(4): 1633-1648.
  • Chen, Z., Huang, C., Yang, Y., Ding, Y., Ou-Yang, H., Zhang, Y., Xu, M. (2012). Inhibition of the STAT3 signaling pathway is involved in the antitumor activity of cepharanthine in SaOS2 cells. Acta Pharmacol. Sin. 33(1): 101-108.
  • Hua, P., Sun, M., Zhang, G., Zhang, Y., Tian, X., Li, X., Cui, R., Zhang, X. (2015). Cepharanthine induces apoptosis through reactive oxygen species and mitochondrial dysfunction in human non-small-cell lung cancer cells. Biochem. Biophys. Res. Commun. 460(2): 136-142.
  • Uthaisar, K., Seubwai, W., Srikoon, P., Vaeteewoottacharn, K. (2012). Cepharanthine Suppresses Metastatic Activity of Cholangiocarcinoma Cells Asian Pacific. Asian Pacific J. Cancer Prev. 13: 149-154.
  • Liu, G., Wu, D., Liang, X., Yue, H., Cui, Y. (2015). Mechanisms and in vitro effects of cepharanthine hydrochloride: Classification analysis of the drug-induced differentially-expressed genes of human nasopharyngeal carcinoma cells. Oncol. Rep. 34(4): 2002-2010.
  • Seubwai, W., Vaeteewoottacharn, K., Hiyoshi, M., Suzu, S., Puapairoj, A., Wongkham, C., Okada, S., Wongkham, S. (2010). Cepharanthine exerts antitumor activity on cholangiocarcinoma by inhibiting NF-κB. Cancer Sci. 101(7): 1590-1595.
  • Takahashi-Makise, N., Suzu, S., Hiyoshi, M., Ohsugi, T., Katano, H., Umezawa, K., Okada, S. (2009). Biscoclaurine alkaloid cepharanthine inhibits the growth of primary effusion lymphoma in vitro and in vivo and induces apoptosis via suppression of the NF-κB pathway. Int. J. Cancer. 125(6): 1464-1472.
  • Harada, K., Supriatno, Yamamoto, S., Kawaguchi, S.-I., Yoshida, H., Sato, M. (2003). Cepharanthine exerts antitumor activity on oral squamous cell carcinoma cell lines by induction of p27Kip1. Anticancer Res. 23(2B): 1441-8.
  • Zhang, Y., Jiang, X., Deng, Q., Gao, Z., Tang, X., Fu, R., Hu, J., Li, Y., Li, L., Gao, N. (2019). Downregulation of MYO1C mediated by cepharanthine inhibits autophagosome-lysosome fusion through blockade of the F-actin network. J. Exp. Clin. Cancer Res. 38(1): 1-18.
  • Shen, L., Jiang, X., Li, Z., Li, J., Wang, M., Jia, G., Ding, X., Lei, L., Gong, Q., Gao, N. (2022). Cepharanthine sensitizes human triple negative breast cancer cells to chemotherapeutic agent epirubicin via inducing cofilin oxidation-mediated mitochondrial fission and apoptosis. Acta Pharmacol. Sin. 43(1): 177-193.
  • Luo, J., Liu, D. (2020). Does GPER Really Function as a G Protein-Coupled Estrogen Receptor in vivo? Front. Endocrinol. (Lausanne). 11(148): 515000.
  • Wang, Y., Su, G.-F., Huang, Z.-X., Wang, Z.-G., Zhou, P.-J., Fan, J.-L., Wang, Y.-F. (2020). Cepharanthine hydrochloride induces mitophagy targeting GPR30 in hepatocellular carcinoma (HCC). Expert Opin. Ther. Targets. 24(4): 389-402.
  • Li, S., Song, Y., Quach, C., Guo, H., Jang, G.-B., Maazi, H., Zhao, S., Sands, N.A., Liu, Q., In, G.K., et al. (2019). Transcriptional regulation of autophagy-lysosomal function in BRAF-driven melanoma progression and chemoresistance. Nat. Commun. 10(1): 1693.
  • Girotti, M.R., Fernández, M., López, J.A., Camafeita, E., Fernández, E.A., Albar, J.P., Benedetti, L.G., Valacco, M.P., Brekken, R.A., Podhajcer, O.L., Llera, A.S. (2011). SPARC Promotes Cathepsin B-Mediated Melanoma Invasiveness through a Collagen I/α2β1 Integrin Axis. J. Invest. Dermatol. 131(12): 2438-2447.
  • Qifan, W., Fen, N., Ying, X., Xinwei, F., Jun, D., Ge, Z. (2016). iRGD-targeted delivery of a pro-apoptotic peptide activated by cathepsin B inhibits tumor growth and metastasis in mice. Tumor Biol. 37(8): 10643-10652.
  • Liu, Y., Xie, Y., Lin, Y., Xu, Q., Huang, Y., Peng, M., Lai, W., Zheng, Y. (2020). Cepharanthine as a Potential Novel Tumor-Regional Therapy in Treating Cutaneous Melanoma: Altering the Expression of Cathepsin B, Tumor Suppressor Genes and Autophagy-Related Proteins. Front. Bioeng. Biotechnol. 8: 1295.
  • Shukla, S., Shishodia, G., Mahata, S., Hedau, S., Pandey, A., Bhambhani, S., Batra, S., Basir, S.F., Das, B.C., Bharti, A.C. (2010). Aberrant expression and constitutive activation of STAT3 in cervical carcinogenesis: Implications in high-risk human papillomavirus infection. Mol. Cancer. 9(1): 1-17.
  • Fang, Z.H., Li, Y.J., Chen, Z., Wang, J.J., Zhu, L.H. (2013). Inhibition of signal transducer and activator of transcription 3 and cyclooxygenase-2 is involved in radiosensitization of cepharanthine in HeLa cells. Int. J. Gynecol. Cancer. 23(4): 608-614.
  • Uto, T., Toyama, M., Yoshinaga, K., Baba, M. (2016). Cepharanthine induces apoptosis through the mitochondria/caspase pathway in murine dendritic cells. Immunopharmacol. Immunotoxicol. 38(3): 238-243.
  • Harada, K., Ferdous, T., Itashiki, Y., Takii, M., Mano, T., Mori, Y., Ueyama, Y. (2009). Cepharanthine inhibits angiogenesis and tumorigenicity of human oral squamous cell carcinoma cells by suppressing expression of vascular endothelial growth factor and interleukin-8. Int. J. Oncol. 35(5): 1025-1035.
  • Harada, K., Ferdous, T., Itashiki, Y., Takii, M., Mano, T., Mori, Y., Ueyama, Y. (2009). Effects of cepharanthine alone and in combination with fluoropyrimidine anticancer agent, S-1, on tumor growth of human oral squamous cell carcinoma xenografts in nude mice. Anticancer Res. 29(4): 1263-70.
  • Guo, Z., Jiang, C.-H., Tong, C., Yang, Y., Wang, Z., Lam, S.M., Wang, D., Li, R., Shui, G., Shi, Y.S., Liu, J.-J. (2022). Activity-dependent PI4P synthesis by PI4KIIIα regulates long-term synaptic potentiation. Cell Rep. 38(9): 110452.
  • Jiang, X., Huang, X., Zheng, G., Jia, G., Li, Z., Ding, X., Lei, L., Yuan, L., Xu, S., Gao, N. (2022). Targeting PI4KA sensitizes refractory leukemia to chemotherapy by modulating the ERK/AMPK/OXPHOS axis. Theranostics. 12(16): 6972.
  • Zhou, P., Zhang, R., Wang, Y., Xu, D., Zhang, L., Qin, J., Su, G., Feng, Y., Chen, H., You, S., Rui, W., Liu, H., Chen, S., Chen, H., Wang, Y. (2017). Cepharanthine hydrochloride reverses the mdr1 (P-glycoprotein)- mediated esophageal squamous cell carcinoma cell cisplatin resistance through JNK and p53 signals. Oncotarget. 8(67): 111144-111160.
  • Zhou, P., Zhang, R., Wang, Y., Xu, D., Zhang, L., Qin, J., Su, G., Feng, Y., Chen, H., You, S., Rui, W., Liu, H., Chen, S., Chen, H., Wang, Y. (2021). Correction: Cepharanthine hydrochloride reverses the mdr1 (P-glycoprotein)-mediated esophageal squamous cell carcinoma cell cisplatin resistance through JNK and p53 signals. Oncotarget. 12(1): 61-62.
  • Zhou, Y., Hopper-Borge, E., Shen, T., Huang, X.C., Shi, Z., Kuang, Y.H., Furukawa, T., Akiyama, S. ichi, Peng, X.X., Ashby, C.R., Chen, X., Kruh, G.D., Chen, Z.S. (2009). Cepharanthine is a potent reversal agent for MRP7(ABCC10)-mediated multidrug resistance. Biochem. Pharmacol. 77(6): 993-1001.
  • Li, H., Yan, Z., Ning, W., Xiao-Juan, G., Cai-Hong, Z., Jin-Hua, J., Fang, M., Qing-Duan, W. (2011). Using Rhodamine 123 Accumulation in CD 8+ Cells as a Surrogate Indicator to Study the P-Glycoprotein Modulating Effect of Cepharanthine Hydrochloride In Vivo. J. Biomed. Biotechnol. 2011: 1-7.
  • Ouellette, M.M., Zhou, S., Yan, Y. (2022). Cell Signaling Pathways That Promote Radio-resistance of Cancer Cells. Diagnostics. 12(3): 656.
  • Xia, S., Zhao, Y., Yu, S., Zhang, M. (2010). Activated PI3K/Akt/COX-2 pathway induces resistance to radiation in human cervical cancer HeLa cells. Cancer Biother. Radiopharm. 25(3): 317-323.
  • Harada, T., Harada, K., Ueyama, Y. (2012). The enhancement of tumor radioresponse by combined treatment with cepharanthine is accompanied by the inhibition of DNA damage repair and the induction of apoptosis in oral squamous cell carcinoma. Int. J. Oncol. 41(2): 565-572.
  • Tamatani, T., Azuma, M., Motegi, K., Takamaru, N., Kawashima, Y., Bando, T. (2007). Cepharanthin-enhanced radiosensitivity through the inhibition of radiation-induced nuclear factor-κB activity in human oral squamous cell carcinoma cells. Int. J. Oncol. 31(4): 761-768.
  • Hoshyar, N., Gray, S., Han, H., Bao, G. (2016). The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 11(6):673-692.
  • Gao, P., Jiang, Z., Luo, Q., Mu, C., Cui, M., Yang, X. (2021). Preparation and Evalua-tion of Self-emulsifying Drug Delivery System (SEDDS) of Cepharanthine. AAPS PharmSciTech. 22(7): 245.
  • Lu, C., Zheng, J., Ding, Y., Meng, Y., Tan, F., Gong, W., Chu, X., Kong, X., Gao, C. (2021). Cepharanthine loaded nanoparticles coated with macrophage membranes for lung inflammation therapy. Drug Deliv. 28(1): 2582-2593.
  • Li, Q., Cai, T., Huang, Y., Zhang, R., Cole, S.P.C., Cai, Y. (2017). The preparation and evaluation of cepharanthine- nanostructured lipid carriers in vitro and in vivo. J. Biomater. Tissue Eng. 7(9): 848-857.
  • Zhao, Y., Fu, T., Meng, G., Qiao, F., Hou, Y., Liu, Y., Yang, J. (2020). Characterization of cepharanthin nanosuspensions and evaluation of their In vitro activity for the HepG2 hepatocellular carcinoma cell line. Anticancer. Agents Med. Chem. 20(18): 2293-2303.
  • Yu, H.-H., Mi, W.-N., Liu, B., Zhao, H.-P. (2016). In vitro and in vivo effect of paclitaxel and cepharanthine co-loaded polymeric nano-particles in gastric cancer. J. BUON. 21(1): 125-34.
  • Shen, Y., Ai, J., Lin, N., Zhang, H., Li, Y., Wang, H., Wang, S., Wang, Z., Li, T., Sun, F., et al. (2022). An open, prospective cohort study of VV116 in Chinese participants infected with SARS-CoV-2 omicron variants. Emerg. Microbes Infect. 11(1): 518-1523.
  • Yamazaki, T., Shibuya, A., Ishii, S., Miura, N., Ohtake, A., Sasaki, N., Araki, R., Ota, Y., Fujiwara, M., Miyajima, Y., et al. (2017). High-dose Cepharanthin for pediatric chronic immune thrombocytopenia in Japan. Pediatr. Int. 59(3): 303-308.
  • Uchiyama, Y., Murakami, S., Kakimoto, N., Nakatani, A., Furukawa, S. (2005). Effectiveness of Cepharanthin in decreasing interruptions during radiation therapy for oral cancer. Oral Radiol. 21(1): 41-44.
  • Desgrouas, C., Chapus, C., Desplans, J., Travaille, C., Pascual, A., Baghdikian, B., Ollivier, E., Parzy, D., Taudon, N. (2014). In vitro antiplasmodial activity of cepharanthine. Malar. J. 13(1): 1-11.
  • Biswas, K.K., Tancharon, S., Sarker, K.P., Kawahara, K.I., Hashiguchi, T., Maruyama, I. (2006). Cepharanthine triggers apoptosis in a human hepatocellular carcinoma cell line (HuH-7) through the activation of JNK1/2 and the downregulation of Akt. FEBS Lett. 580(2): 703-710.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.