18
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microwave-assisted extraction of Lawsonia inermis L. leaves: Method validation, optimization, and tyrosinase-stimulating activity

, &
Pages 98-111 | Received 09 Dec 2023, Accepted 15 Feb 2024, Published online: 18 Mar 2024

References

  • National Institute of Arthritis and Musculoskeletal and Skin Diseases. (2022). Vitiligo. Available from https://www.niams.nih.gov/health-topics/vitiligo. Accessed on August 2, 2023.
  • National Library of Medicine. (2023). PubChem compound summary for CID 670, Dihydroxyacetone. Available from https://pubchem.ncbi.nlm.nih.gov/compound/Dihydroxyacetone. Accessed on August 2 2023.
  • Rajatanavin, N., Suwanachote, S., Kulkolla- karn, S. (2008). Dihydroxyacetone: a safe camouflaging option in vitiligo. Internaional Journal of Dermatology. 47(4): 402-406. doi: 10.1111/j.1365-4632.2008.03356.x
  • Striz, A., DePina, A., Jones, R., Jr., Gao, X., Yourick, J. (2021). Cytotoxic, genotoxic, and toxicogenomic effects of dihydroxyacetone in human primary keratinocytes. Cutaneous and Ocular Toxicology. 40(3): 232-240. doi: 10.1080/15569527.2021.1931877
  • Zokaie, S., Singh, S., Wakelin, S.H. (2011). Allergic contact dermatitis caused by dihydroxy- acetone – optimal concentration and vehicle for patch testing. Contact Dermatitis. 64(5): 291-292. doi: 10.1111/j.1600-0536.2010.01870.x
  • Draelos, Z.D. (2002). Self-tanning lotions. American Journal of Clinical Dermatology. 3(5): 317-318. doi: 10.2165/00128071-200203050-00003
  • Singh, D.K., Luqman, S., Mathur, A.K. (2015). Lawsonia inermis L. – A commercially important primaeval dying and medicinal plant with diverse pharmacological activity: A review. Industrial Crops and Products. 65: 269-286. doi: 10.1016/j.indcrop.2014.11.025
  • Munt, D.J., Grana, A., Hulce, M., Fusaro, R.M., Dash, A.K. (2015). Effect of simultaneous administration of dihydroxyacetone on the diffusion of lawsone through various in vitro skin models. AAPS PharmSciTech. 16(6): 1425-1433. doi: 10.1208/s12249-015-0335-8
  • El Rayess, Y., Dawra, M., El Beyrouthy, M. (2022). Chapter 17 - Modern extraction techni- ques for herbal bioactives. Herbal Bioactive- Based Drug Delivery Systems: 437-455. doi: 10.1016/B978-0-12-824385-5.00002-9
  • Nguyen, T.P., Songsermpong, S. (2022). Microwave processing technology for food safety and quality: A review. Agriculture and Natural Resources. 56: 57-72.
  • Cardoso-Ugarte, G.A., Juárez-Becerra, G.P., SosaMorales, M.E., López-Malo, A. (2013). Microwave-assisted extraction of essential oils from herbs. Journal of Microwave Power and Electromagnetic Energy. 47(1): 63-72. doi: 10.1080/08327823.2013.11689846
  • Llompart, M., Garcia-Jares, C., Celeiro, M., Dagnac, T. (2019). Extraction | Microwave- assisted extraction. Encyclopedia of Analytical Science (Third Edition): 67–77.
  • Song, Z., Wei, X., Xie, M., Zhao, X., Sun, J., Mao, Y., et al. (2022). Study on the microwave extraction process and product distribution of essential oils from citrus peel. Chemical Engineering and Processing - Process Intensification. 171: 108726. doi: 10.1016/j.cep.2021.108726
  • Uzel, R.A. (2018). Microwave-assisted green extraction technology for sustainable food processing. Emerging microwave technologies in industrial, agricultural, medical and food processing. 159-178.
  • ICH Expert Working Group. (2005). ICH Q2(R1) validation of analytical procedures: Text and methodology. Available from https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf. Accessed on 20 August 2023.
  • Center for Drug Evaluation and Research. (1994). Reviewer guidance - Validation of chromatographic methods. Available from https://www.fda.gov/media/75643/download. Accessed on 20 August 2023.
  • Kanchanathawornviboon, X., Monton, C., Urairong, H. (2023). Microwave-assisted extrac- tion of curcuminoids from organic Curcumalonga L. in different oil types for cos-metic purpose: An optimization approach. Journal of Current Science and Technology. 11(1): 71-89.
  • Monton, C., Kittiratpattana, P., Nakyai, S., Sutapakul, T., Navabhatra, A., Wunnakup, T., et al. (2021). Microwave-assisted extraction of Clausena anisata leaves and Vernonia cinerea whole plants to maximize nitrate content: optimization approach, antioxidant activity, and cytotoxicity. Advances in Traditional Medicine. 22: 697-711. doi: 10.1007/s13596-021-00581-8
  • Suksaeree, J., Navabhatra, A., Wunnakup, T., Monton, C. (2022). Synergistic antioxidant activity and optimal microwave-assisted extrac- tion condition of Caesalpinia sappan L., Hibiscus sabdariffa L., and Clitoria ternatea L. combinations. Trends in Sciences. 19(24): 3265.
  • Monton, C., Keawchay, P., Pokkrong, C., Kamnoedthapaya, P., Navabhatra, A., Suksaeree, J., et al. (2023). Fabrication of direct compressible tablets containing Chatuphalathika extract obtained through microwave-assisted extraction: An optimization approach. Scientia Pharmaceutica. 91(2): 17. doi: 10.3390/scipharm91020017
  • Monton, C., Luprasong, C., Charoenchai, L. (2019). Acceleration of turmeric drying using convection and microwave-assisted drying technique: An optimization approach. Journal of Food Processing and Preservation. 43(9): e14096. doi: 10.1111/jfpp.14096
  • Monton, C., Luprasong, C., Charoenchai, L. (2019). Convection combined microwave drying affect quality of volatile oil compositions and quantity of curcuminoids of turmeric raw material. Revista Brasileira de Farmacognosia. 29(4): 434-440. doi: 10.1016/j.bjp.2019.04.006
  • Suksaeree, J., Monton, C., Charoenchai, L., Chankana, N. (2023). Microwave-assisted drying of Prasakanphlu herbal granules and formulation development of Prasakanphlu tablets: Design of Experiments approach. Advances in Traditional Medicine. 23(4): 1265–1276. doi: 10.1007/s13596-023-00681-7
  • Suksaeree, J., Monton, C., Chankana, N., Charoenchai, L. (2023). Application of micro- wave-assisted drying to shorten granules drying process for the preparation of Thunbergia laurifolia Lindl. leaf tablets. Trends in Sciences. 20(5): 4993. doi: 10.48048/tis.2023.4993
  • Abidin, L., Mujeeb, M., Aqil, M., Najmi, A.K., Ahmad, A. (2020). Computer-aided Box–Behnken outlook towards optimization of extraction of lawsone from mehendi leaves. Pharmacognosy Magazine. 16(68): 39-46. doi: 10.4103/pm.pm_345_19
  • Kavepour, N., Bayati, M., Rahimi, M., Aliahmadi, A., Nejad Ebrahimi, S. (2023). Optimization of aqueous extraction of henna leaves (Lawsonia inermis L.) and evaluation of biological activity by HPLC-based profiling and molecular docking techniques. Chemical Engineering Research and Design. 195: 332-343. doi: 10.1016/j.cherd.2023.06.003
  • Monton, C., Madaka, F., Settharaksa, S., Wunnakup, T., Suksaeree, J., Songsak, T. (2019). Optimal condition of cannabis macera- tion to obtain the high cannabidiol and Δ9- tetrahydrocannabinol content. Anais da Academia Brasileira de Ciências. 91(3): e20190676. doi: 10.1590/0001-3765201920190676
  • Teansuwan, N., Sripanidkulchai, B., Jaipak- dee, N. (2016). Effect of four herb extracts on melanin synthesis. Isan Journal of Pharmaceutical Sciences. 11(Supplement): 33-42.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.