26,095
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images

& ORCID Icon
Pages 144-154 | Received 13 Feb 2017, Accepted 22 Feb 2017, Published online: 09 Mar 2017

References

  • Ali, I., Greifeneder, F., Stamenkovic, J., Neumann, M., & Notarnicola, C. (2015). Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data. Remote Sensing, 7, 16398–154. doi:10.3390/rs71215841
  • Ashutosh, S. (2012). Monitoring forests: A new paradigm of remote sensing & GIS based change detection. Journal of Geographic Information System, 4, 470–478. doi:10.4236/jgis.2012.45051
  • Beluco, A., Engel, P.M., & Beluco, A. (2015). Classification of textures in satellite image with Gabor filters and a multilayer perceptron with back propagation algorithm obtaining high accuracy. International Journal of Energy and Environment, 6(5), 437–460. doi:10.5935/2076-2909.20150001
  • Bochenek, Z., Ciołkosz, A., & Iracka, M. (1997). deterioration of forests in the Sudety Mountains, Poland, detected on satellite images. Environmental Pollution, 98(3), 375–379. doi:10.1016/S0269-7491(97)00146-2
  • Braga-Neto, U.M., & Dougherty, E.R. (2014). Is cross-validation valid for small sample microarray classification? Bioinformatics, 20, 374–380. doi:10.1093/bioinformatics/btg419
  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. doi:10.1023/A:1010933404324
  • Breiman, L., & Cutler, A. (2004). Random forests. Available at https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm, accessed on 21.04.2016
  • Burai, P., Deak, B., Valko, O., & Tomor, T. (2015). Classification of herbaceous vegetation using airborne hyperspectral imagery. Remote Sensing, 7, 2046–2066. doi:10.3390/rs70202046
  • R Core Team. (2015). R: A language and environment for statistical computing, R foundation for statistical computing, Vienna, Austria. https://www.R-project.org/.
  • Dalponte, M., Orka, H.O., Gobakken, T., Gianelle, D., & Naesset, E. (2013). Tree species classification in boreal forests with hyperspectral data. IEEE Transactions on Geoscience & Remote Sensing, 51(5), 2632–2645. doi:10.1109/TGRS.2012.2216272
  • Doktor, D., Lausch, A., Spengler, D., & Thurner, M. (2014). Extraction of plant physiological status from hyperspectral signatures using machine learning methods. Remote Sensing, 6, 12247–12274. doi:10.3390/rs61212247
  • Elhadi, A., Onisimo, M., Abdel-Rahman, E., & Riyad, I. (2014). Estimating standing biomass in papyrus (Cyperus papyrus L.) swamp: Exploratory of in situ hyperspectral indices and random forest regression. International Journal of Remote Sensing, 35, 693–714. doi:10.1080/01431161.2013.870676
  • Fassnacht, F., Latifi, H., Stereńczak, K., Modzelewska, A., Lefsky, M., Waser, L., … Ghosh, A. (2016). Review of studies on tree species classification from remotely sensed data. Remote Sensing of Environment, 186, 64–87. doi:10.1016/j.rse.2016.08.013
  • Fassnacht, F.E., Neuman, C., Forster, M., Buddenbaum, H., Ghosh, A., Clasen, A., … Koch, B. (2014). Comparison of feature reduction algorithms for classifying tree species with hyperspectral data on three central European test sites. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 2547–2561. doi:10.1109/JSTARS.2014.2329390
  • Feilhauer, H., Asner, G.P., & Martin, R.E. (2015). Multi-method ensemble selection of spectral bands related to leaf biochemistry. Remote Sensing of Environment, 164, 57–65. doi:10.1016/j.rse.2015.03.033
  • Ghimire, B., Rogan, J., & Miller, J. (2010). Contextual land-cover classification: Incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic. Remote Sensing Letters, 1, 45–54. doi:10.1080/01431160903252327
  • Ghiyamat, A., Shafri, H., Amouzad, M.G., Shariff, A., & Mansor, S. (2013). Hyperspectral discrimination of tree species with different classifications using single- and multiple-endmember. International Journal of Applied Earth Observations and Geoinformation, 23, 177–191. doi:10.1016/j.jag.2013.01.004
  • Ghosh, A., Fassnacht, F.E., Joshi, P.K., & Koch, B. (2014). A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales. International Journal of Applied Erath Observation and Geoinformation, 26, 49–63. doi:10.1016/j.jag.2013.05.017
  • Gupta, D.K., Kumar, P., Mishra, V.N., Prasad, R., Dikshit, P.K.S., Dwivedi, S.B., … Srivastava, V. (2015). Bistatic measurements for the estimation of rice crop variables using artificial neural network. Advances in Space Research, 55(6), 1613–1623. doi:10.1016/j.asr.2015.01.003
  • Huang, C., Davis, L.S., & Townshed, J.R.G. (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23, 725–749. doi:10.1080/01431160110040323
  • Hueni, A., Biesemans, J., Meuleman, K., Dell’Endice, F., Schlapfer, D., Odermatt, D., & Kneubuehler, M. (2009). Structure, components, and interfaces of the Airborne Prism Experiment (APEX) processing and archiving facility. IEEE Transactions on Geoscience and Remote Sensing, 47, 29–43. doi:10.1109/TGRS.2008.2005828
  • Itten, K.I., Dell’Endice, F., Hueni, A., Kneubuhler, M., Schlapfer, D., Odermatt, D., & Seidel, F. (2008). APEX – The hyperspectral ESA Airborne Prism Experiment. Sensors, 8, 6235–6259. doi:10.3390/s8106235
  • Jadczyk, P. (2009). Natural effects of large-area forest decline in the Western Sudeten. Environment Protection Engineering, 35, 49–56. http://epe.pwr.wroc.pl/2009/Jadczyk_1-2009.pdf
  • Jain, A.K., Duin, R.P.W., & Mao, J. (2000). Statistical pattern recognition: A review. IEEE Transactions Pattern Analysis and Machine Intelligence, 22, 4–37. doi:10.1109/34.824819
  • Jarocińska, A., Zagajewski, B., Ochtyra, A., Marcinkowska-Ochtyra, A., Kycko, M., & Pabjanek, P. (2014). Process of ecological disaster in Karkonosze and Izerskie Mts. on Landsat satellite images [in Polish: Przebieg klęski ekologicznej w Karkonoszach i Górach Izerskich na podstawie analizy zdjęć satelitarnych Landsat]. In R. Knapik (ed.), Konferencja Naukowa z okazji 55-lecia Karkonoskiego Parku Narodowego: 25 lat po klęsce ekologicznej w Karkonoszach i Górach Izerskich – obawy a rzeczywistość (pp. 47–62). Karpacz: Karkonoski National Park. 16-18.01. 2014. ISBN 978-83-64528-58-3.
  • Jarocińska, A.M., Kacprzyk, M., Marcinkowska-Ochtyra, A., Ochtyra, A., Zagajewski, B., & Meuleman, K. (2016). The application of APEX images in the assessment of the state of non-forest vegetation in the Karkonosze Mountains. Miscellanea Geographica – Regional Studies On Development, 20(1), 21–27. , doi:10.1515/mgrsd-2016-0009
  • Kavzoglu, T., & Mather, P.M. (2003). The use of backpropagating artificial neural networks in land cover classification. International Journal of Remote Sensing, 24(23), 4097–4938. doi:10.1080/0143116031000114851
  • Kokaly, R.F., Despain, D.G., Clark, R.N., & Livo, K.E. (2003). Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data. Remote Sensing of Environment, 84, 437–456. doi:10.1016/S0034-4257(02)00133-5
  • Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3), 18–22.
  • Linderman, M., Liu, J., Qi, J., An, L., Ouyang, Z., Yang, J., & Tan, Y. (2004). Using artificial neural networks to map the spatial distribution of understorey bamboo from remote sensing data. International Journal Remote Sensing, 25(9), 1685–1700. doi:10.1080/01431160310001598971
  • Lucas, R., Bunting, P., Paterson, M., & Chisholm, L. (2008). Classification of Australian forest communities using aerial photography, CASI and HyMap data. Remote Sensing of Environment, 112(5), 2088–2103. doi:10.1016/j.rse.2007.10.011
  • Marcinkowska, A., Zagajewski, B., Ochtyra, A., Jarocińska, A., Raczko, E., Kupkova, L., … Meuleman, K. (2014). Mapping vegetation communities of the Karkonosze National Park using APEX hyperspectral data and support vector machines. Miscellanea Geographica, 18(2), 1–7. doi:10.2478/mgrsd-2014-0007,
  • Mas, J.F., & Flores, J.J. (2008). The application of artificial neural networks to the analysis of remotely sensed data. International Journal of Remote Sensing, 29(3), 617–663. doi:10.1080/01431160701352154
  • Masaitis, G., & Mozgeris, G. (2013). The influence of the growing season on the spectral reflectance properties of forest tree species. Research for Rural Development - International Scientific Conference, 2, 20–26. http://connection.ebscohost.com/c/articles/93640992/influence-growing-season-spectral-reflectance-properties-forest-tree-species
  • Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. (2015). e1071: Misc functions of the department of statistics, probability theory group (Formerly: E1071), TU Wien, R package version 1.6-7, http://CRAN.R-project.org/package=e1071
  • Nagendra, H., Lucas, R., Honradoc, J.P., Jongman, R.H.G., Tarantino, C., Adamo, M., & Mairotaf, P. (2013). Remote sensing for conservation monitoring: Assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecological Indicators, 33, 45–59. doi:10.1016/j.ecolind.2012.09.014
  • Naidoo, L., Cho, M.A., Mathieu, R., & Asner, G. (2012). Classification of Savanna tree species, in the greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a random forest data mining environment. ISPRS Journal of Photogrammetry and Remote Sensing, 69, 167–179. doi:10.1016/j.isprsjprs.2012.03.005
  • Omer, G., Mutanga, O., Abdel-Rahman, E.M., & Adam, E. (2015). Performance of support vector machines and artificial neural network for mapping endangered tree species using WorldView-2 data in Dukuduku forest, South Africa. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(10), 4825–4840. doi:10.1109/JSTARS.2015.2461136
  • Pal, M. (2005). Random forest classifier for remote sensing classification. International Journal of Remote Sensing, 26(1), 217–222. doi:10.1080/01431160412331269698
  • Pal, M., & Mather, P.M. (2006). Some issues in the classification of DAIS hyperspectral data. International Journal of Remote Sensing, 27(14), 2895–2916. doi:10.1080/01431160500185227
  • Peerbhay, K., Mutanga, O., & Ismail, R. (2013). Commercial tree species discrimination using airborne AISA Eagle hyperspectral imagery and partial least squares discriminant analysis (PLS-DA) in KwaZulu–Natal, South Africa. ISPRS Journal of Photogrammetry and Remote Sensing, 79, 19–28. doi:10.1016/j.isprsjprs.2013.01.013
  • Petropoulos, G., Kontoes, C., & Keramitsoglou, I. (2012). Land cover mapping with emphasis to burnt area delineation using co-orbital ALI and Landsat TM imagery. International Journal of Applied Earth Observations and Geoinformation, 18, 344–355. doi:10.1016/j.jag.2012.02.004
  • Popp, C., Brunner, D., Damm, A., Van Roozendael, M., Fayt, C., & Buchmann, B. (2012). High-resolution NO2 remote sensing from the Airborne Prism EXperiment (APEX) imaging spectrometer, Atmospheric Measurement Techniques. 5, 2211–2225. doi:10.5194/amt-5-2211-2012
  • Priedītis, G., Šmits, I., Daģis, S., Paura, L., Krūmiņš, J., & Dubrovskis, D. (2015). Assessment of hyperspectral data analysis methods to classify tree species. Research for Rural Development, 2, 7–13.
  • Raj, A. (2014). Przemiany krajobrazu leśnego Karkonoskiego Parku Narodowego w okresie ostatnich kilkudziesięciu lat. Karkonoski Park Narodowy, Jelenia Góra. Vol. 100. ISBN:978-83-64528-16-3.
  • Rajee, G., Hitendra, P., & Kushwaha, S.P.S. (2014). Forest tree species discrimination in western Himalaya using EO−1 Hyperion. International Journal of Applied Earth Observation and Geoinformation, 28, 140−149. doi:10.1016/j.jag.2013.11.011
  • Shen, G., Sakai, K., & Hoshino, Y. (2010). High spatial resolution hyperspectral mapping for forest ecosystem at tree species level. Agricultural Information Research, 19(3), 71–78. doi:10.3173/air.19.71
  • Sluiter, R., & Pebesma, E.J. (2010). Comparing techniques for vegetation classification using multi- and hyperspectral images and ancillary environmental data. International Journal of Remote Sensing, 31(23), 6143–6161. doi:10.1080/01431160903401379
  • Sommer, C,. Holzwarth S., Heiden U., Heurich M., Mueller J., & Mauser W. (2015). Feature-based treee species classification using airborne hyperspectral and lidar data in the Bavarian Forest National Park. EARSeL eProceedings, 14(2), 49-70. doi: 10.12760/02-2015-2-05.
  • Suess, S., van der Linden, S., Okujeni, A., Leitão, P.J., Schwieder, M., & Hostert, P. (2015). Using class probabilities to map gradual transitions in shrub vegetation from simulated EnMAP data. Remote Sensing, 7, 10668–10688. doi:10.3390/rs70810668
  • Sun, L., & Schulz, K. (2015). The improvement of land cover classification by thermal remote sensing. Remote Sensing, 7, 8368–8390. doi:10.3390/rs70708368
  • Thenkabail, P.S., Lyon, J.G., & Huete, A. (2012). Advances in hyperspectral remote sensing of vegetation and agricultural croplands. In P.S. Thenkabail, J.G. Lyon, & A. Huete (eds), ‘Hyperspectral remote sensing of vegetation’ (pp. 3–35). Boca Raton, FL, USA: CRC Press Taylor & Francis Group.
  • Vapnik, V.N. (1995). The Nature of Statistical Learning Theory. New York: Springer. doi:10.1007/978-1-4757-3264-1
  • Venables, W.N., & Ripley, B.D. (2002). Modern applied statistics with S (Fourth ed.). New York: Springer. ISBN 0-387-95457-0, 462.
  • Werbos, P. (1994). The roots of backpropagation: From ordered derivatives to neural networks and political forecasting (adaptive and learning systems for signal processing, communications and control series) (pp. 342). New York: John Wiley & Sons.
  • Zagajewski, B. (2010). Ocena przydatności sieci neuronowych i danych hiperspektralnych do klasyfikacji roślinności Tatr Wysokich [assessment of neural networks and imaging spectroscopy for vegetation classification of the high tatras]. Teledetekcja Środowiska, 43, 113.
  • Zhang, C., & Xie, Z. (2012). Combining object-based texture measures with a neural network for vegetation mapping in the Everglades from hyperspectral imagery. Remote Sensing of Environment, 124, 310–320. doi:10.1016/j.rse.2012.05.015