2,090
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of regression models to estimate biomass losses and CO2 emissions using low-density airborne laser scanning data in a burnt Aleppo pine forest

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 384-396 | Received 31 Jan 2017, Accepted 24 May 2017, Published online: 15 Jun 2017

References

  • Akagi, S.K., Yokelson, R.J., Burling, I.R., Meinardi, S., Simpson, I., Blake, D.R., … Weise, D.R. (2013). Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes. Atmospheric Chemistry and Physics, 13(3), 1141–396. doi:10.5194/acp-13-1141-2013
  • Andersen, H.E., McGaughey, R.J., & Reutebuch, S.E. (2005). Estimating forest canopy fuel parameters using LIDAR data. Remote Sensing of Environment, 94(4), 441–449. doi:10.1016/j.rse.2004.10.013
  • Andreae, M.O., Browell, E.V., Garstang, M., Gregory, G.L., Harriss, R.C., Hill, G.F., & Wofsy, S.C. (1988). Biomass-burning emissions and associated haze layers over Amazonia. Journal of Geophysical Research, 93(D2), 1509–1527. doi:10.1029/JD093iD02p01509
  • Breiman, L. (2001). Random forest. Machine Learning, 45, 5–32. doi:10.1023/A:1010933404324
  • Call, P.T., & Albini, F.A. (1997). Aerial and surface fuel consumption in crown fires. International Journal of Wildland Fire, 7(3), 259–264. doi:10.1071/WF9970259
  • Chuvieco, E. (2009). Global impacts of fire. In E., Chuvieco Ed., Earth observation of wildland fires in Mediterranean ecosystems (pp. 1–10). Berlin Heidelberg: Springer. doi:10.1007/978-3-642-01754-4
  • Cleveland, W.S., & Devlin, S.J. (1988). Locally weighted regression: An approach to regression analysis by local fitting. Journal of the American Statistical Association, 83(403), 596–610. doi:10.1080/01621459.1988.10478639
  • De Santis, A., Asner, G.P., Vaughan, P.J., & Knapp, D.E. (2010). Mapping burn severity and burning efficiency in California using simulation models and Landsat imagery. Remote Sensing of Environment, 114(7), 1535–1545. doi:10.1016/j.rse.2010.02.008
  • Deeming, J., Burgan, R., & Cohen, J. (1977). General Technical Report INT-39, The National Fire-Danger Rating System — 1978. U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT, pp. 63.
  • Estornell, J., Ruiz, L.A., Veláquez-Martí, B., & Hermosilla, T. (2012). Estimation of biomass and volumen of shrub vegetation using LiDAR and spectral data in a Mediterranean environment. Biomass and Bioenergy, 46, 710–721. doi:10.1016/j.biombioe.2012.06.023
  • Evans, J.S., & Hudak, A.T. (2007). A multiscale curvature algorithm for classifying discrete return LiDAR in forested environments. IEEE Transactions on Geoscience and Remote Sensing, 45(4), 1029–1038. doi:10.1109/TGRS.2006.890412
  • Evans, J.S., Hudak, A.T., Faux, R., & Smith, A.M.S. (2009). Discrete return LiDAR in natural resources: Recommendations for project planning, data processing, and deliverables. Remote Sensing, 1(4), 776–794. doi:10.3390/rs1040776
  • Fix, E., & Hodges, J. (1951). Texas, Report No. 4, Project No. 21-49-004, Discriminatory analysis, nonparametric discrimination: Consistency properties. USAF School of Aviation Medicine, Randolph Field
  • French, N.H.F., Goovaerts, P., & Kasischke, E.S. (2004). Uncertainty in estimating carbon emissions from boreal forest fires. Journal of Geophysical Research, 109(D14), D14S08. doi:10.1029/2003JD003635
  • Friedman, M. (1940). A comparison of alternative tests of significance for the problem rankings. The Annals of Mathematical Statistics, 11(1), 86–92. doi:10.1214/aoms/1177731944
  • Gagliasso, D., Hummel, S., & Temesgen, H. (2014). A comparison of selected parametric and non-parametric imputation methods for estimating forest biomass and basal area. Open Journal of Forestry, 4(1), 42–48. doi:10.4236/ojf.2014.41008
  • García, D., Godino, M., & Mauro, F. (2012). LIDAR: Aplicación práctica al inventario forestal. Editorial Academica Española, 10, 3659009555.
  • García, M., Riaño, D., Chuvieco, E., & Danson, F.M. (2010). Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sensing of Environment, 114(4), 816830. doi:10.1016/j.rse.2009.11.021
  • García-Gutiérrez, J., Martínez-Álvarez, F., Troncoso, A., & Riquelme, J.C. (2015). A comparison of machine learning regression techniques for LiDAR-derived estimation of forest variables. Neurocomputing, 167, 24–31. doi:10.1016/j.neucom.2014.09.091
  • Gleason, C.J., & Im, J. (2012). Forest biomass estimation from airborne LiDAR data using machine learning approaches. Remote Sensing of Environment, 125, 80–91. doi:10.1016/j.rse.2012.07.006
  • Gonzalez-Ferreiro, E., Dieguez-Aranda, U., & Miranda, D. (2012). Estimation of stand variables in Pinus radiata D. Don plantations using different LiDAR pulse densities. Forestry, 85(2), 281–292. doi:10.1093/forestry/cps002
  • González-Ferreiro, E., Miranda, D., Barreiro-Fernandez, L., Bujan, S., García-Gutiérrez, J., & Dieguez-Aranda, U. (2013). Modelling stand biomass fractions in Galician Eucalyptus globulus plantations by use of different LiDAR pulse densities. Forest Systems, 22(3), 510–525. doi:10.5424/fs/2013223-03878
  • Görgens, E.B., Montaghi, A., & Rodriguez, L.C.E. (2015). A performance comparison of machine learning methods to estimate the fast-growing forest plantation yield based on laser scanning metrics. Computers and Electronics in Agriculture, 116, 221–227. doi:10.1016/j.compag.2015.07.004
  • Greaves, H., Vierling, L., Eitel, J., Boelman, N., Magney, T., Prager, C., & Griffin, K. (2016). High-resolution mapping of aboveground shrub biomass in Arctic tundra using airborne lidar and imagery. Remote Sensing of Environment, 184, 361–373. doi:10.1016/j.rse.2016.07.026
  • Guerra-Hernández, J., Görgens, E.B., García-Gutiérrez, J., Rodriguez, L.C.E., Tomé, M., & González-Ferreiro, E. (2016b). Comparison of ALS based models for estimating aboveground biomass in three types of Mediterranean forest. European Journal of Remote Sensing, 49, 185–204. doi:10.5721/EuJRS201649
  • Guerra-Hernández, J., Tomé, M., & González-Ferreiro, E. (2016a). Using low density LiDAR data to map Mediterranean forest characteristics by means of an area-based approach and height threshold analysis. Revista De Teledetección, 46, 103–117. doi:10.4995/raet.2016.3980
  • Hall, S.A., Burke, I.C., Box, D.O., Kaufmann, M.R., & Stoker, J.M. (2005). Estimating stand structure using discrete-return Lidar: An example from low density, fire prone ponderosa pine forests. Forest Ecology and Management, 208(1), 189–209. doi:10.1016/j.foreco.2004.12.001
  • Hayashi, R., Weiskittel, A., & Sader, S. (2014). Assessing the feasibility of low-density LiDAR for stand inventory attribute predictions in complex and managed forests of Northern Maine, USA. Forests, 5(2), 363–383. doi:10.3390/f5020363
  • Holopainen, M., Vastaranta, M., Rasinmäki, J., Kalliovirta, J., Mäkinen, A., Haapanen, R., … Hyyppä, H. (2010). Estimation of timber assortments using low-density ALS data. In W. Wagner & B. Székely (Eds.), ISPRS TC VII Symposium – 100 Years ISPRS: Vol. XXXVIII, Part 7A (pp. 59–64). Vienna, Austria: IAPRS.
  • IGN. (2017a). PNOA Imagen. Ministerio de Fomento, Instituto Geográfico Nacional, Madrid. Retrieved January 10, 2017, http://pnoa.ign.es/presentacion-y-objetivo.
  • IGN. (2017b). PNOA LiDAR. Ministerio de Fomento, Instituto Geográfico Nacional, Madrid. Retrieved January 10, 2017, http://pnoa.ign.es/presentacion.
  • IPCC. (2006). 2006 IPCC guidelines for national greenhouse gas inventories. Volume 4: Agriculture, forestry and other land use. In H.S. Eggleston, L. Buendia, K. Miwa, T. Ngara, & K. Tanabe Eds, Prepared by the national greenhouse gas inventories programme. Japan:IGES. ISBN 4-88788-032-4
  • Key, C.H., & Benson, N. (2006). Landscape assessment (LA). Sampling and analysis methods. In L.J. Lutes, D.C. Keane, R.E. Caratti, J.F. Key, C.H. Benson, & N.C. Gangi (Eds.), FIREMON: Fire effects monitoring and inventory system. Integration of standardized field data collection techniques and sampling design with remote sensing to assess fire effects (pp. LA1–LA51). Fort Collins, CO: Rocky Mountain Research Station, U.S. Department of Agriculture, Forest Service.
  • Lal, R. (2008). Sequestration of atmospheric CO2 in global carbon pools. Energy and Environmental Science, 1, 86–100. doi:10.1039/B809492F
  • Latifi, H., Nothdurft, A., & Koch, B. (2010). Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: Application of multiple optical/LiDAR-derived predictors. Forestry, 83(4), 395–407. doi:10.1093/forestry/cpq022
  • Le Toan, T., Beaudoin, A., Riom, J., & Guyon, D. (1992). Relating forest biomass to SAR data. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 403–411. doi:10.1109/36.134089
  • Leboeuf, A., Fournier, R.A., Luther, J.E., Beaudoin, A., & Guindon, L. (2012). Forest attribute estimation of northeastern Canadian forests using QuickBird imagery and a shadow fraction method. Forest Ecology and Management, 266, 66–74. doi:10.1016/j.foreco.2011.11.008
  • Lefsky, M.A., Cohen, W.B., Parker, G.G., & Harding, D.J. (2002). Lidar remote sensing for ecosystem studies. BioScience, 52(1), 19–30; (2002)052[0019: LRSFES]2.0.CO;2. 10.1641/0006-3568
  • Levine, J.S. (2003). Biomass burning: The cycling of gases and particulates from the biosphere to the atmosphere. Treatise on Geochemistry, 4, 143–158. doi:10.1016/B0-08-043751-6/04143-8
  • Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3), 18–22.
  • Lim, K., Treitz, P., Wulder, M., St-Onge, B., & Flood, M. (2003). LiDAR remote sensing of forest structure. Progress in Physical Geography, 27(1), 88–106. doi:10.1191/0309133303pp360ra
  • MAGRAMA (2016a). Estadísticas de incendios forestales. Ministerio de Agricultura y Pecas, Alimentación y Medio Ambiente, Madrid. Retrieved April 10, 2016, from http://www.magrama.gob.es/es/desarrollo-rural/estadisticas/Incendios_default.aspx
  • MAGRAMA (2016b). Mapa Forestal de España 1:50.000 (MFE50). Ministerio de Agricultura y Pecas, Alimentación y Medio Ambiente, Madrid. Retrieved May 4, 2016, from http://www.magrama.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/mfe50.aspx
  • Maltamo, M., Næsset, E., & Vauhkonen, J. (2014). Forestry applications of airborne laser scanning: Concepts and case studies. Netherlands: Springer. doi:10.1007/978-94-017-8663-8
  • McGaughey, R.J. (2008). FUSION/LDV: Software for LIDAR data analysis and visualization. USA: USDA Forest Service, Pacific Northwest Research Station.
  • Means, J., Acker, S., Harding, D., Blair, J., Lefsky, M., Cohen, W., & McKee, W. (1999). Use of large-footprint scanning airborne lidar to estimate forest stand characteristics in the western Cascades of Oregon. Remote Sensing of Environment, 67, 298–308. doi:10.1016/S0034-4257(98)00091-1
  • Mehtätalo, L., Virolainen, A., Tuomela, J., & Packalen, P. (2015). Estimating tree height distribution using low-density ALS data with and without training data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(4), 1432–1441. doi:10.1109/JSTARS.2015.2418675
  • Mieville, A., Granier, C., Liousse, C., Guillaume, B., Mouillot, F., Lamarque, J.-F., & Pétron, G. (2010). Emissions of gases and particles from biomass burning during the 20th century using satellite data and an historical reconstruction. Atmospheric Environment, 44(11), 1469–1477. doi:10.1016/j.atmosenv.2010.01.011
  • Miranda, A.I., Borrego, C., Sousa, M., Valente, J., Barbosa, P., & Carvalho, A. (2005). Model of forest fire emissions to the atmosphere. Aveiro, Portugal: Department of Environment and Planning, University of Aveiro AMB-QA-07/2005, Deliverable D252 of SPREAD Project (EVG1-CT-2001-00043).
  • Mitsopoulos, I.D., & Dimitrakopoulos, A.P. (2007). Allometric equations for crown fuel biomass of Aleppo pine (Pinus halepensis Mill.) in Greece. International Journal of Wildland Fire, 16(5), 642–647. doi:10.1071/WF06038
  • Montagnoli, A., Fusco, S., Terzagui, M., Kirschbaum, A., Pflugmacher, D., Cohen, W.B., … Chiatante, D. (2015). Estimating forest aboveground biomass by low density lidar data in mixed broad-leaved forests in the Italian pre-alps. Forest Ecosystems, 2–10. doi:10.1186/s40663-015-0035-6
  • Montealegre, A.L., Lamelas, M.T., & de la Riva, J. (2015a). A comparison of open-source LiDAR filtering algorithms in a Mediterranean forest environment. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(8), 4072–4085. doi:10.1109/JSTARS.2015.2436974
  • Montealegre, A.L., Lamelas, M.T., & de la Riva, J. (2015b). Interpolation routines assessment in ALS-derived digital elevation models for forestry applications. Remote Sensing, 7, 8631–8654. doi:10.3390/rs70708631
  • Montealegre, A.L., Lamelas, M.T., de la Riva, J., García-Martín, A., & Escribano, F. (2015c). Assessment of biomass and carbon content in a Mediterranean Aleppo pine forest using ALS data. In Proceedings of 1st International Electronic Conference on Remote Sensing. Basel, Switzerland: MDPI, 22 June - 5 July 2015, Vol. 1, d004. Sciforum Electronic Conference Series.
  • Montealegre, A.L., Lamelas, M.T., de la Riva, J., García-Martín, A., & Escribano, F. (2016). Use of low point density ALS data to estimate stand-level structural variables in Mediterranean Aleppo pine forest. Forestry, 89(4), 373–382. doi:10.1093/forestry/cpw008
  • Montero, G., Ruiz-Peinado, R., & Muñoz, M. (2005). Producción de biomasa y fijación de CO2 por los bosques españoles(p. 270). Madrid: Instituto Nacional de Investigación y Técnica Agraria y Alimentaria (INIA). ISBN: 8474985129
  • Moriondo, M., Good, P., Durao, R., Bindi, M., Giannakopoulos, C., & Corte-Real, J. (2006). Potential impact of climate change on fire risk in the Mediterranean area. Climate Research, 31(1), 85–95. doi:10.3354/cr031085
  • Mountrakis, G., Jungho, I., & Caesar, O. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247–259. doi:10.1016/j.isprsjprs.2010.11.001
  • Næsset, E. (2002). Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sensing of Environment, 80(1), 88–99. doi:10.1016/S0034-4257(01)00290-5
  • Næsset, E., & Gobakken, T. (2008). Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser. Remote Sensing of Environment, 112(6), 3079–3090. doi:10.1016/j.rse.2008.03.004
  • Næsset, E., & Økland, T. (2002). Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve. Remote Sensing of Environment, 79(1), 105–115. doi:10.1016/S0034-4257(01)00243-7
  • Narayan, C., Fernandes, P.M., Van Brusselen, J., & Schuck, A. (2007). Potential for CO2 emissions mitigation in Europe through prescribed burning in the context of the Kyoto Protocol. Forest Ecology and Management, 251(3), 164–173. doi:10.1016/j.foreco.2007.06.042
  • Nemenyi, P. (1963). Distribution-free multiple comparisons. Princeton University, Ph.D. thesis, Princenton, NY, USA.
  • Nilsson, M. (1996). Estimation of tree heights and stand volume using an airborne lidar system. Remote Sensing of Environment, 56(1), 1–7. doi:10.1016/0034-4257(95)00224-3
  • Oliva, P., & Chuvieco, E. (2011). Towards a dynamic burning efficiency factor. In J. San-Miguel, I. Gitas, A. Camia, & S. Oliveira (Eds.), Advances in remote sensing and GIS applications in Forest Fire Management: From local to global assessment (pp. 51–56). Luxembourg: Publications Office of the European Union.
  • Oliveira, S., Oehler, F., San-Miguel-Ayanz, J., Camia, A., & Pereira, J.M.C. (2012). Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest. Forest Ecology and Management, 275, 117–129. doi:10.1016/j.foreco.2012.03.003
  • Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., … Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988–993. doi:10.1126/science.1201609
  • Pausas, J.G., Llovet, J., Rodrigo, A., & Vallejo, R. (2008). Are wildfires a disaster in the Mediterranean basin? – A review. International Journal of Wildland Fire, 17(6), 713–723. doi:10.1071/WF07151
  • Pétron, G., Granier, C., Khattatov, B., Yudin, V., Lamarque, J.-F., Emmons, L., & Edwards, D.P. (2004). Monthly CO surface sources inventory based on the 2000-2001 MOPITT satellite data. Geophysical Research Letters, 31, L21107. doi:10.1029/2004GL020560
  • Popescu, S.C., Randolph, H.W., & Ross, F.N. (2003). Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Canadian Journal of Remote Sensing, 29(5), 564–577. doi:10.5589/m03-027
  • Prasad, V.K., Kant, Y., Gupta, P.K., Sharma, C., Mitra, A., & Badarinath, K.V. (2001). Biomass and combustion characteristics of secondary mixed deciduous forests in Eastern Ghats of India. Atmospheric Environment, 35(18), 3085–3095. doi:10.1016/S1352-2310(01)00125-X
  • Quinlan, J.R. (1992). Learning with continuous classes. In Proceedings of the 5th Australian Joint Conference on Artificial Intelligence (pp. 343–348). Singapore, World Scientic.
  • Renslow, M. (2013). Manual of Airborne Topographic Lidar (p. 528). Bethesda, MD: 99: The American Society for Photogrammetry and Remote Sensing. ISBN: 978-1570830976
  • Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14(5), 465–471. doi:10.1016/0005-1098(78)90005-5
  • Rodrigues, M., Ibarra, P., Echeverria, M., Perez-Cabello, F., & de la Riva, J. (2014). A method for regional-scale assessment of vegetation recovery time after high-severity wildfires: Case study of Spain. Progress in Physical Geography, 38(5), 556–575. doi:10.1177/0309133314542956
  • Roy, D.P., Jin, Y., Lewis, P.E., & Justice, C.O. (2005). Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Remote Sensing of Environment, 97(2), 137–162. doi:10.1016/j.rse.2005.04.007
  • Sá, A.C.L., Pereira, J.M.C., & Silva, J.M.N. (2005). Estimation of combustion completeness based on fire‐induced spectral reflectance changes in a dambo grassland (Western Province, Zambia). International Journal of Remote Sensing, 26(19), 4185–4195. doi:10.1080/01431160500113468
  • San-Miguel-Ayanz, J., Rodrigues, M., De Oliveira, S.S., Pacheco, C.K., Moreira, F., Duguy, B., & Camia, A. (2012). Land cover change and fire regime in the European Mediterranean region. In F. Moreira, M. Arianoutsou, P. Corona, & J. de las Heras (Eds.), Post-fire management and restoration of Southern European forests (pp. 21–43). Netherlands: Springer. doi:10.1007/978-94-007-2208-8_2
  • Scott, J.H., & Reinhardt, E.D. (2001). Assessing crown fire potential by linking models of surface and crown fire behavior. Research Paper RMRS-29. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, Co.
  • Sebastián-López, A., Salvador-Civil, R., Gonzalo-Jiménez, J., & SanMiguel-Ayanz, J. (2008). Integration of socio-economic and environmental variables for modelling long-term fire danger in Southern Europe. European Journal of Forest Research, 127(2), 149–163. doi:10.1007/s10342-007-0191-5
  • Seiler, W., & Crutzen, P.J. (1980). Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climatic Change, 2(3), 207–247. doi:10.1007/BF00137988
  • Shendryk, I., Margareta, H., Leif, K., & Natascha, K. (2014). Low-density LiDAR and optical imagery for biomass estimation over boreal forest in Sweden. Forests, 5(5), 992–1010. doi:10.3390/f5050992
  • Singh, K.K., Gang, C., James, B.M., & Ross, K.M. (2015). Effects of LiDAR point density and landscape context on estimates of urban forest biomass. ISPRS Journal of Photogrammetry and Remote Sensing, 101, 310–322. doi:10.1016/j.isprsjprs.2014.12.021
  • Stojanova, D., Panče, P., Valentin, G., Andrej, K., & Sašo, D. (2010). Estimating vegetation height and canopy cover from remotely sensed data with machine learning. Ecological Informatics, 5(4), 256–266. doi:10.1016/j.ecoinf.2010.03.004
  • Swatantran, A., Dubayah, R., Roberts, D., Hofton, M., & Bryan Blair, J. (2011). Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion. Remote Sensing of Environment, 115, 2917–2930. doi:10.1016/j.rse.2010.08.027
  • Tanase, M., de la Riva, J., Santoro, M., Pérez-Cabello, F., & Kasischke, E. (2011). Sensitivity of SAR data to post-fire forest regrowth in Mediterranean and boreal forests. Remote Sensing of Environment, 115(8), 2075–2085. doi:10.1016/j.rse.2011.04.009
  • Trozzi, C., Vaccaro, R., & Piscitello, R. (2002). Emissions estimate from forest fires: Methodology, software and European case studies. In Proceedings of the 11th International Emission Inventory Conference. Atlanta, GA.
  • USGS. (2016). USGS Earth explorer. U.S. Department of the Interior, U.S. Geological Survey. Retrieved April 10, 2016 from http://earthexplorer.usgs.gov/
  • Van Der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G.J., Kasibhatla, P.S., & Arellano, A.F. (2006). Interannual variability in global biomass burning emissions from 1997 to 2004. Atmospheric Chemistry and Physics, 6(11), 3423–3441. doi:10.5194/acp-6-3423-2006
  • Van Der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G.J., Mu, M., Kasibhatla, P.S., & Van Leeuwen, T.T. (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics, 10(23), 11707–11735. doi:10.5194/acp-10-11707-2010
  • Van Essen, D.C., Dickson, J., Harwell, J., Hanlon, D., Anderson, C.H., & Drury, H.A. (2001). An integrated software suite for surface-based analyses of cerebral cortex. Journal of the American Medical Informatics Association : JAMIA, 8(5), 443–459. doi:10.1136/jamia.2001.0080443
  • Vermote, E., Justice, C., Claverie, M., & Franch, B. (2016). Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of Environment, 185, 46–56. doi:10.1016/j.rse.2016.04.008
  • Vosselman, G., & Maas, H.-G. (2010). Airborne and terrestrial laser scanning. p. 336. Caithness: Whittles Publishing. ISBN: 978-1904445-87-6.
  • Ward, D.E., Hao, W.M., Susott, R.A., Babbitt, R.E., Shea, R.W., Kauffman, J.B., & Justice, C.O. (1996). Effect of fuel composition on combustion efficiency and emission factors for African savanna ecosystems. Journal of Geophysical Research: Atmospheres, 101(D19), 23569–23576. doi:10.1029/95JD02595
  • Watt, M.S., Meredith, A., Watt, P., Gunn, A., Andersen, H., Reutebuch, S., & Nelson, R. (2013). Use of LiDAR to estimate stand characteristics for thinning operations in young Douglas-fir plantations. New Zealand Journal of Forestry Science, 43, 18. doi:10.1186/1179-5395-43-18
  • Wiedinmyer, C., Akagi, S.K., Yokelson, R.J., Emmons, L.K., Al-Saadi, J.A., Orlando, J.J., & Soja, A.J. (2011). The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4(3), 625–641. doi:10.5194/gmd-4-625-2011
  • Wiedinmyer, C., & Neff, J.C. (2007). Estimates of CO2 from fires in the United States: Implications for carbon management. Carbon Balance and Management, 2–10. doi:10.1186/1750-0680-2-10