4,915
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Fusion of Sentinel-1 data with Sentinel-2 products to overcome non-favourable atmospheric conditions for the delineation of inundation maps

, &
Pages 53-66 | Received 06 Dec 2018, Accepted 15 Mar 2019, Published online: 13 Apr 2019

References

  • Arnesen, A.S., Silva, T.S., Hess, L.L., Novo, E.M., Rudorff, C.M., Chapman, B.D., & McDonald, K.C. (2013). Monitoring flood extent in the lower Amazon River floodplain using ALOS/PALSAR ScanSAR images. Remote Sensing of Environment, 130, 51–61. doi:10.1016/j.rse.2012.10.035
  • Beatty, W.S., Kesler, D.C., Webb, E.B., Raedeke, A.H., Naylor, L.W., & Humburg, D.D. (2014). The role of protected area wetlands in waterfowl habitat conservation: Implications for protected area network design. Biological Conservation, 176, 144–152. doi:10.1016/j.biocon.2014.05.018
  • Behnamian, A., Banks, S., White, L., Brisco, B., Milard, K., Pasher, J., … Battaglia, M. (2017). Semi-automated surface water detection with synthetic aperture radar data: A Wetland case study. Remote Sensing, 9(12), 1209. doi:10.3390/rs9121209
  • Bolanos, S., Stiff, D., Brisco, B., & Pietroniro, A. (2016). Operational surface water detection and monitoring using Radarsat 2. Remote Sensing, 8(4), 285. doi:10.3390/rs8040285
  • Bovolo, F., & Bruzzone, L. (2007). A split-based approach to unsupervised change detection in large-size multitemporal images: Application to tsunami-damage assessment. IEEE Transactions on Geoscience and Remote Sensing, 45(6), 1658–1670. doi:10.1109/TGRS.2007.895835
  • Brisco, B., Kapfer, M., Hirose, T., Tedford, B., & Liu, J. (2011). Evaluation of C-band polarization diversity and polarimetry for wetland mapping. Canadian Journal of Remote Sensing, 37(1), 82–92. doi:10.5589/m11-017
  • Brito, F., Gonçalves, P., & Caumont, H. (2016). EO data processing tools v1 (Deliverable No: 3.2), ECOPOTENTIAL H2020 EU project (pp. 87).
  • Chapman, B., McDonald, K., Shimada, M., Rosenqvist, A., Schroeder, R., & Hess, L. (2015). Mapping regional inundation with spaceborne L-Band SAR. Remote Sensing, 7(5), 5440–5470. doi:10.3390/rs70505440
  • Díaz-Delgado, R., Aragonés, D., Afán, I., & Bustamante, J. (2016). Long-term monitoring of the flooding regime and hydroperiod of Doñana marshes with Landsat time series (1974–2014). Remote Sensing, 8(9), 775. doi:10.3390/rs8090775
  • Donchyts, G., Schellekens, J., Winsemius, H., Eisemann, E., & van de Giesen, N. (2016). A 30 m resolution surface water mask including estimation of positional and thematic differences using landsat 8, srtm and openstreetmap: A case study in the Murray-Darling Basin, Australia. Remote Sensing, 8(5), 386. doi:10.3390/rs8050386
  • Du, Y., Zhang, Y., Ling, F., Wang, Q., Li, W., & Li, X. (2016). Water bodies’ mapping from Sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sensing, 8(4), 354. doi:10.3390/rs8040354
  • Feng, Q., Gong, J., Liu, J., & Li, Y. (2015). Flood mapping based on multiple endmember spectral mixture analysis and random forest classifier—The case of Yuyao, China. Remote Sensing, 7(9), 12539–12562. doi:10.3390/rs70912539
  • Giustarini, L., Chini, M., Hostache, R., Pappenberger, F., & Matgen, P. (2015). Flood hazard mapping combining hydrodynamic modeling and multi annual remote sensing data. Remote Sensing, 7(10), 14200–14226. doi:10.3390/rs71014200
  • Green, A.J., Bustamante, J., Janss, G.F.E., Fernández-Zamudio, R., & Díaz-Paniagua, C. (2016). Doñana Wetlands (Spain). In Finlayson C., Milton G., Prentice R., Davidson N. (eds), The Wetland book (pp. 1–14). Dordrecht: Springer.
  • Gstaiger, V., Huth, J., Gebhardt, S., Wehrmann, T., & Kuenzer, C. (2012). Multi-sensoral and automated derivation of inundated areas using TerraSAR-X and ENVISAT ASAR data. International Journal of Remote Sensing, 33(22), 7291–7304. doi:10.1080/01431161.2012.700421
  • Guo, M., Li, J., Sheng, C., Xu, J., & Wu, L. (2017). A review of wetland remote sensing. Sensors, 17(4), 777. doi:10.3390/s17050968
  • Hahmann, T., & Wessel, B. (2010, June). Surface water body detection in high-resolution TerraSAR-X data using active contour models. In Synthetic Aperture Radar (EUSAR), 2010 8th European conference on (pp. 1–4), Aachen, Germany, 7−10 June 2010.
  • Henry, J.B., Chastanet, P., Fellah, K., & Desnos, Y.L. (2006). Envisat multi‐polarized ASAR data for flood mapping. International Journal of Remote Sensing, 27(10), 1921–1929. doi:10.1080/01431160500486724
  • Huang, W., DeVries, B., Huang, C., Lang, M.W., Jones, J.W., Creed, I.F., & Carroll, M.L. (2018). Automated extraction of surface water extent from Sentinel-1 data. Remote Sensing, 10(5), 797. doi:10.3390/rs10050797
  • Irwin, K., Beaulne, D., Braun, A., & Fotopoulos, G. (2017). Fusion of SAR, optical imagery and airborne LiDAR for surface water detection. Remote Sensing, 9(9), 890. doi:10.3390/rs9090890
  • Kasischke, E.S., Bourgeau-Chavez, L.L., Rober, A.R., Wyatt, K.H., Waddington, J.M., & Turetsky, M.R. (2009). Effects of soil moisture and water depth on ERS SAR backscatter measurements from an Alaskan wetland complex. Remote Sensing of Environment, 113, 1868–1873. doi:10.1016/j.rse.2009.04.006
  • Khan, S.I., Hong, Y., Wang, J., Yilmaz, K.K., Gourley, J.J., Adler, R.F., … Irwin, D. (2011). Satellite remote sensing and hydrologic modeling for flood inundation mapping in Lake Victoria basin: Implications for hydrologic prediction in ungauged basins. IEEE Transactions on Geoscience and Remote Sensing, 49(1), 85–95. doi:10.1109/TGRS.2010.2057513
  • Kloskowski, J., Green, A.J., Polak, M., Bustamante, J., & Krogulec, J. (2009). Complementary use of natural and artificial wetlands by waterbirds wintering in Doñana, south-west Spain. Aquatic Conservation: Marine and Freshwater Ecosystems, 19(7), 815–826. doi:10.1002/aqc.v19:7
  • Ko, B.C., Kim, H.H., & Nam, J.Y. (2015). Classification of potential water bodies using Landsat 8 OLI and a combination of two boosted random forest classifiers. Sensors, 15(6), 13763–13777. doi:10.3390/s150613763
  • Kordelas, G., Manakos, I., Aragonés, D., Díaz-Delgado, R., & Bustamante, J. (2018). Fast and automatic data-driven thresholding for inundation mapping with Sentinel-2 data. Remote Sensing, 10(6), 910. doi:10.3390/rs10060910
  • Landis, J.R., & Koch, G.G. (1977). The measurement of observer agreement for categorical data. Biometrics, 159–174. doi:10.2307/2529310
  • Li, J., & Wang, S. (2015). An automatic method for mapping inland surface waterbodies with Radarsat-2 imagery. International Journal of Remote Sensing, 36(5), 1367–1384. doi:10.1080/01431161.2015.1009653
  • Marti-Cardona, B., Dolz-Ripolles, J., Lopez-Martinez, C. (2013). Wetland inundation monitoring by the synergistic use of ENVISAT/ASAR imagery and ancilliary spatial data. Remote sensing of environment, 139, 171–184. doi:10.1016/j.rse.2013.07.028
  • Martinis, S., Kuenzer, C., Wendleder, A., Huth, J., Twele, A., Roth, A., & Dech, S. (2015). Comparing four operational SAR-based water and flood detection approaches. International Journal of Remote Sensing, 36(13), 3519–3543. doi:10.1080/01431161.2015.1060647
  • Martinis, S., Twele, A., & Voigt, S. (2009). Towards operational near real-time flood detection using a split-based automatic thresholding procedure on high resolution TerraSAR-X data. Natural Hazards and Earth System Sciences, 9(2), 303–314. doi:10.5194/nhess-9-303-2009
  • Martinis, S., Twele, A., & Voigt, S. (2011). Unsupervised extraction of flood-induced backscatter changes in SAR dat` using Markov image modeling on irregular graphs. IEEE Transactions on Geoscience and Remote Sensing, 49(1), 251–263. doi:10.1109/TGRS.2010.2052816
  • Mason, D.C., Horritt, M.S., Dall‘Amico, J.T., Scott, T.R., & Bates, P.D. (2007). Improving river flood extent delineation from synthetic aperture radar using airborne laser altimetry. IEEE Transactions on Geoscience and Remote Sensing, 45(12), 3932–3943. doi:10.1109/TGRS.2007.901032
  • McNairn, H., & Brisco, B. (2004). The application of C-band polarimetric SAR for agriculture: A review. Canadian Journal of Remote Sensing, 30(3), 525–542. doi:10.5589/m03-069
  • Mitchard, E.T., Saatchi, S.S., White, L., Abernethy, K., Jeffery, K.J., Lewis, S.L., … Meir, P. (2012). Mapping tropical forest biomass with radar and spaceborne LiDAR in Lopé National Park, Gabon: Overcoming problems of high biomass and persistent cloud. Biogeosciences, 9(1), 179–191. doi:10.5194/bg-9-179-2012
  • Musamba, E.B., Boon, E.K., Ngaga, Y.M., Giliba, R.A., & Dumulinyi, T. (2012). The recreational value of Wetlands: Activities, socio-economic activities and consumers’ surplus around Lake Victoria in Musoma Municipality, Tanzania. Journal of Human Ecology, 37(2), 85–92. doi:10.1080/09709274.2012.11906451
  • Nakmuenwai, P., Yamazaki, F., & Liu, W. (2017). Automated extraction of inundated areas from multi-temporal dual-polarization RADARSAT-2 images of the 2011 central Thailand flood. Remote Sensing, 9(1), 78. doi:10.3390/rs9010078
  • Nandi, I., Srivastava, P.K., & Shah, K. (2017). Floodplain mapping through support vector machine and optical/infrared images from Landsat 8 OLI/TIRS sensors: Case study from Varanasi. Water Resources Management, 31(4), 1157–1171. doi:10.1007/s11269-017-1568-y
  • Park, E., Lee, S., & Peters, D.J. (2017). Iowa wetlands outdoor recreation visitors’ decision-making process: An extended model of goal-directed behavior. Journal of Outdoor Recreation and Tourism, 17, 64–76. doi:10.1016/j.jort.2017.01.001
  • Pham-Duc, B., Prigent, C., & Aires, F. (2017). Surface water monitoring within Cambodia and the Vietnamese Mekong Delta over a year, with Sentinel-1 SAR observations. Water, 9(6), 366. doi:10.3390/w9060366
  • Pierdicca, N., Pulvirenti, L., Chini, M., Guerriero, L., & Candela, L. (2013). Observing floods from space: Experience gained from COSMO-SkyMed observations. Acta astronautica, 84, 122–133. doi:10.1016/j.actaastro.2012.10.034
  • Ramos-Fuertes, A., Marti-Cardona, B., Bladé, E., & Dolz, J. (2014). Envisat/ASAR images for the calibration of wind drag action in the Doñana wetlands 2D hydrodynamic model. Remote Sensing, 6(1), 379–406. doi:10.3390/rs6010379
  • Sarp, G., & Ozcelik, M. (2017). Water body extraction and change detection using time series: A case study of Lake Burdur, Turkey. Journal of Taibah University for Science, 11(3), 381–391. doi:10.1016/j.jtusci.2016.04.005
  • Skakun, S. (2012). A neural network approach to flood mapping using satellite imagery. Computing and Informatics, 29(6), 1013–1024.
  • Sui, H., An, K., Xu, C., Liu, J., & Feng, W. (2018). Flood detection in PolSAR images based on level set method considering prior geoinformation. IEEE Geoscience and Remote Sensing Letters, 15(5), 699–703. doi:10.1109/LGRS.2018.2810122
  • Sun, F., Sun, W., Chen, J., & Gong, P. (2012). Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery. International Journal of Remote Sensing, 33(21), 6854–6875. doi:10.1080/01431161.2012.692829
  • Wang, Y., & Yésou, H. (2018). Remote sensing of floodpath Lakes and Wetlands: A challenging frontier in the monitoring of changing environments. Remote Sensing, 10(12), 1955. doi:10.3390/rs10121955
  • White, L., Brisco, B., Dabboor, M., Schmitt, A., & Pratt, A. (2015). A collection of SAR methodologies for monitoring wetlands. Remote Sensing, 7(6), 7615–7645. doi:10.3390/rs70607615
  • Yang, X., & Lu, X.X. (2013). Delineation of lakes and reservoirs in large river basins: An example of the Yangtze River Basin, China. Geomorphology, 190, 92–102. doi:10.1016/j.geomorph.2013.02.018
  • Zhang, L., Wang, M.H., Hu, J., & Ho, Y.S. (2010). A review of published wetland research, 1991–2008: Ecological engineering and ecosystem restoration. Ecological Engineering, 36(8), 973–980. doi:10.1016/j.ecoleng.2010.04.029