2,906
Views
6
CrossRef citations to date
0
Altmetric
Research Article

DIEGO: A Multispectral Thermal Mission for Earth Observation on the International Space Station

, , , , , , , & show all
Pages 28-38 | Received 09 Nov 2018, Accepted 25 Nov 2019, Published online: 06 Dec 2019

References

  • Abrams, M., Tsu, H., Hulley, G., Iwao, K., Pieri, D., Cudahy, T., & Kargel, J. (2015). The advanced spaceborne Thermal emission and reflection radiometer (ASTER) after fifteen years: Review of global products. International Journal of Remote Sensing, 21(5), 847–859. doi:10.1080/014311600210326
  • Alexander, M.E. (1982). Calculating and interpreting forest fire intensities. Canadian Journal of Botany, 60, 349–357. doi:10.1139/b82-048
  • Anderson, M., Norman, J., Kustas, W., Houborg, R., Starks, P., & Agam, N. (2008). A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales. Remote Sensing of Environment, 112(12), 4227–4241. doi:10.1016/j.rse.2008.07.009
  • Anejionu, O.C.D. (2019). Rationale, historical developments and advances in remote sensing of gas flares. International Journal of Remote Sensing, 40(17), 6700–6719. doi:10.1080/01431161.2019.1590880
  • Arai, T., Kobayashi, M., Yamada, M., Senshu, H., Ishimaru, R., Wada, K., … Matsui, T. (2014). METEOR: Meteor observation project on board the international space station. Retrieved from https://repository.exst.jaxa.jp/dspace/bitstream/a-is/530549/1/SA6000033029.pdf
  • Atwood, E.C., Englhart, S., Lorenz, E., Halle, W., Wiedemann, W., & Siegert, F. (2016). Detection and characterization of low temperature peat fires during the 2015 fire catastrophe in indonesia using a new high-sensitivity fire monitoring satellite sensor (FireBird). PloS One, 11(8), 1–24.
  • Caseiro, A., Rücker, G., Tiemann, J., Leimbach, D., Lorenz, E., Frauenberger, O., & Kaiser, J. (2018). Persistent hot spot detection and characterisation using SLSTR. Remote Sensing, 10(7), 1118.
  • Corson, M.R., Bowles, J.H., Chen, W., Davis, C.O., Gallelli, K.H., Korwan, D.R., … Holasek, R. (2004). The HICO program - hyperspectral imaging of the coastal ocean from the international space station. International Geoscience and Remote Sensing Symposium, IGARSS ‘04. Proceedings, Anchorage, USA (pp. 4184–4186).
  • Dash, P. (2005). Land surface temperature and emissivity retrieval from satellite measurements (Dissertation). University of Karlsruhe, Karlsruhe.
  • Eckardt, A., Horack, J., Lehmann, F., Krutz, D., Drescher, J., Whorton, M., & Soutullo, M. (2015). DESIS (DLR earth sensing imaging spectrometer for the ISS-MUSES platform). International Geoscience and Remote Sensing Symposium IGARSS, Milan, Italy, (pp. 1457–1459).
  • Elvidge, C., Zhizhin, M., Hsu, F., & Baugh, K. (2013). VIIRS nightfire: Satellite pyrometry at night. Remote Sensing, 5(9), 4423–4449. doi:10.3390/rs5094423
  • Estrada, F., Botzen, W.J.W., & Tol, R.S.J. (2017). A global economic assessment of city policies to reduce climate change impacts. Nature Climate Change, 7(6), 403–406. doi:10.1038/nclimate3301
  • Fisher, D., & Wooster, M. (2018). Shortwave IR adaption of the mid-infrared radiance method of fire radiative power (FRP) retrieval for assessing industrial gas flaring output. Remote Sensing, 10(305), 1–23. doi:10.3390/rs10020305
  • Gamillo, E. (2018). Atmospheric carbon last year reached levels not seen in 800,000 years. Science. doi:10.1126/science.aau9866
  • Gerhards, M., Schlerf, M., Mallick, K., & Udelhoven, T. (2019). Challenges and future perspectives of multi-/hyperspectral thermal infrared remote sensing for crop water-stress detection: A review. Remote Sensing, 11, 1240. doi:10.3390/rs11101240
  • Giglio, L., & Justice, C. (2003). Effect of wavelength selection on characterization of fire size and temperature. International Journal of Remote Sensing, 24(17), 3515–3520. doi:10.1080/0143116031000117056
  • Giglio, L., & Kendall, J. (2001). Application of the Dozier retrieval to wildfire characterization - A sensitivity analysis. Remote Sensing of Environment, 77(1), 34–49. doi:10.1016/S0034-4257(01)00192-4
  • Giglio, L., & Schroeder, W. (2014). A global feasibility assessment of the bi-spectral fire temperature and area retrieval using MODIS data. Remote Sensing of Environment, 152, 166–173.
  • Gillespie, A., Rokugawa, S., Matsunaga, T., Cothern, J.S., Hook, S., & Kahle, A.B. (1998). A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1113–1126.
  • Hopkin, M. (2007). Greenhouse-gas levels accelerating. Nature. doi:10.1038/news.2007.186
  • Hulley, G., Hook, S., Fisher, J., & Lee, C. (2017). ECOSTRESS, A NASA earth-ventures Instrument for studying links between the water cycle and plant health over the diurnal cycle. International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, USA, (pp. 5494–5496).
  • Hulley, G., Shivers, S., Wetherley, E., & Cudd, R. (2019). New ECOSTRESS and MODIS land surface temperature data reveal fine-scale heat vulnerability in cities: A case study for Los Angeles County, California. Remote Sensing, 11, 2136.
  • Intergovernmental Panel on Climate Change (IPCC). (2014). Summary for policymakers. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., Kissel, E.S., Levy, A.N., MacCracken, S., Mastrandrea, P.R., and White, L.L. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and NewYork, NY, USA, pp. 1-32 (pp. 1–32).
  • Intergovernmental Panel on Climate Change (IPCC). (2018). Global warming of 1.5°C (special report no. 15).
  • Jin, M., & Liang, S. (2006). An improved land surface emissivity parameter for land surface models using global remote sensing observations. Journal of Climate, 19(12), 2867–2881. doi:10.1175/JCLI3720.1
  • Justice, C.L., Giglio, S., Korontzi, J., Owens, J., Morisette, D., Roy, J., … Kaufman, Y. (2002). The MODIS fire products. Remote Sensing of Environment, 83, 244–262. doi:10.1016/S0034-4257(02)00076-7
  • Kaiser, J.W., Heil, A., Andreae, M.O., Benedetti, A., Chubarova, N., Jones, L., … van der Werf, G.R. (2012). Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences, 9(1), 527–554.
  • Khanal, S., Fulton, J., & Shearer, S. (2017). An overview of current and potential applications of thermal remote sensing in precision agriculture. Computers and Electronics in Agriculture, 139, 22–32. doi:10.1016/j.compag.2017.05.001
  • Kremens, R., Smith, A.M.S., & Dickinson, M.D. (2010). Fire metrology: Current and future directions in physics-based measurements. Fire Ecology, 6(1), 13–35. doi:10.4996/fireecology.0601013
  • Li, Z.L., Tang, B.H., Wu, H., Ren, H., Yan, G., Wan, Z., … Sobrino, J.A. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment, 131, 14–37. doi:10.1016/j.rse.2012.12.008
  • Lin, W., & Portabella, M. (2017). Toward an improved wind quality control for RapidScat. Transactions on Geoscience and Remote Sensing, 55(7), 3922–3930.
  • Lorenz, E., Mitchell, S., Säuberlich, T., Paproth, C., Halle, W., & Frauenberger, W. (2015). Remote sensing of high temperature events by the FireBIRD mission. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-7/W3, Berlin, Germany (pp. 461–467).
  • Matsuoka, M., Kawasaki, K., Ueno, S., Tomida, H., Kohama, M., Ishikawa, M., … Morii, M. (2007). An overview of MAXI onboard JEM-EF of the international space station. SPIE Proceedings, San Diego, USA (pp. 6686).
  • Meerdink, S.K., Hook, S.J., Roberts, D.A., & Abbott, E.A. (2019). The ECOSTRESS spectral library version 1.0. Remote Sensing of Environment, 230, 111196.
  • Merchant, C.J., Matthiesen, S., Rayner, N.A., Remedios, J.J., Jones, P.D., Olesen, F., … Hulley, G.C. (2013). The surface temperatures of Earth: Steps towards integrated understanding of variability and change. Geoscientific Instrumentation, Methods and Data Systems, 2, 305–321. doi:10.5194/gi-2-305-2013
  • Moscadelli, M., Diani, M., & Corsini, G. (2017). Temperature-emissivity separation assessment in a sub-urban scenario. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3/W3, Jyväskylä, Finland (pp. 129–136).
  • Mota, B., & Wooster, M.J. (2018). A new top-down approach for directly estimating biomass burning emissions and fuel consumption rates and totals from geostationary satellite fire radiative power (FRP). Remote Sensing of Environment, 206(1), 45–62. doi:10.1016/j.rse.2017.12.016
  • Muri, P., Runco, S., Fontanot, C., & Getteau, C. (2017). The high definition earth viewing (HDEV) payload. Aerospace Conference, Big Sky, USA(pp. 1–7).
  • Myhre, G., Shindell, D., Bréon, F.M., Collins, W., Fuglestvedt, J., Huang, J., … Mendoza, B. (2013). Anthropogenic and natural radiative forcing. In T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, … P.M. Midgley (Eds.), Climate change 2013: The physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (). United Kingdom: Cambridge University Press, Cambridge.
  • Neeck, S.P. (2015). The NASA earth science flight program: An update. In R. Meynart, S.P. Neeck, & H. Shimoda (Eds.), SPIE proceedings. sensors, systems, and next-generation satellites, Toulouse, France, (Vol. XIX, pp. 963907).
  • Ninomiya, Y. (2004). Lithologic mapping with multispectral ASTER TIR and SWIR data. Proceedings of SPIE - The International Society for Optical Engineering, 5234, 180–190.
  • Olsen, D.R., Kim, H.J., Ranganathan, J., & Laguette, S. (2011). Development of a low-cost student-built multi-spectral sensor for the international space station. In J.J. Butler, X. Xiong, & X. Gu (Eds.), SPIE proceedings. earth observing systems, San Diego, USA, (Vol. XVI, pp. 81530O).
  • Oltra-Carrió, R., Sobrino, J.A., Franch, B., & Nerry, F. (2012). Land surface emissivity retrieval from airborne sensor over urban areas. Remote Sensing of Environment, 123, 298–305.
  • Prata, A.J., Caselles, V., Coll, C., Sobrino, J.A., & Ottlé, C. (1995). Thermal remote sensing of land surface temperature from satellites: Current status and future prospects. Remote Sensing Reviews, 12(3/4), 175–224. doi:10.1080/02757259509532285
  • Rienow, A., Graw, V., Heinemann, S., Schultz, J., Selg, F., & Menz, G. (2015). Experiencing space by exploring the earth – easy-to-use image processing tools in school lessons. Proceedings of the 66th International Astronautical Congress, 12–16 October Jerusalem, Israel.
  • Roberts, G.J., & Wooster, M.J. (2008). Fire detection and fire characterization over africa using meteosat SEVIRI.IEEE transactions on. Geoscience and Remote Sensing, 46(4), 1200–1218.
  • Ruecker, G., Menz, G., Heinemann, S., Hartmann, M., & Oertel, D. (2015). VISIR-SAT – a prospective micro-satellite based multi-spectral thermal mission for land applications. In ISPRS - international archives of the photogrammetry, remote sensing and spatial information sciences XL-7(W3) (pp. 1283–1289). doi:10.5194/isprsarchives-XL-7-W3-1283-2015
  • Schroeder, W., Oliva, P., Giglio, L., & Csiszar, I. (2014). The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment. Remote Sensing of Environment, 143, 85–96.
  • Schultz, J.A., Ortwein, A., & Rienow, A. (2018). Technical note: Using ISS videos in earth observation – Implementations for science and education. European Journal of Remote Sensing, 51(1), 28–32. doi:10.1080/22797254.2017.1396880
  • Siegert, F., Zhukov, B., Oertel, D., Limin, S., Page, S.E., & Rieley, J.O. (2004). Peat fires detected by the BIRD satellite. International Journal of Remote Sensing, 25(16), 3221–3230. doi:10.1080/01431160310001642377
  • Sobrino, J.A., Jiménez-Muñoz, J.C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90(4), 434–440.
  • Sobrino, J.A., Oltra-Carrió, R., Sòria, G., Bianchi, R., & Paganini, M. (2012). Impact of spatial resolution and satellite overpass time on evaluation of the surface urban heat island effects. Remote Sensing of Environment, 117, 50–56. doi:10.1016/j.rse.2011.04.042
  • Stavros, E.N., Schimel, D., Pavlick, R., Serbin, S., Swann, A., Duncanson, L., … Wennberg, P. (2017). ISS observations offer insights into plant function. Nature Ecology & Evolution, 1(7), 194. doi:10.1038/s41559-017-0194
  • Tetzlaff, A. (2004). Coal fire quantification using ASTER, ETM and BIRD satellite instrument data. (Dissertation), Ludwig-Maximilians-University, Munic.
  • Van Der Werf, G.R., Randerson, J.T., Giglio, L., Van Leeuwen, T.T., Chen, Y., Rogers, B.M., … Yokelson, R.J. (2017). Global fire emissions estimates during 1997–2016. Earth System Science Data, 9, 697–720. doi:10.5194/essd-9-697-2017
  • Wooster, M.J., Roberts, G., Perry, G.L.W., & Kaufman, Y.J. (2005). Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. Journal of Geophysical Research, 110(D24311), 1–24.
  • Yokelson, R.J., Karl, T., Artaxo, P., Blake, D.R., Christian, T.J., Griffith, D.W.T., … Hao, W.M. (2007). The tropical forest and fire emissions experiment: Overview and airborne fire emission factor measurements. Atmospheric Chemistry and Physics, 7, 5175–5196. doi:10.5194/acp-7-5175-2007
  • Zhukov, B., Lorenz, E., Oertel, D., Wooster, M., & Roberts, G. (2006). Spaceborne detection and characterization of fires during the bi-spectral infrared detection (BIRD) experimental small satellite mission (2001–2004). Remote Sensing of Environment, 100(1), 29–51. doi:10.1016/j.rse.2005.09.019