2,286
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Multi-spectral image change detection based on single-band iterative weighting and fuzzy C-means clustering

, , &
Pages 1-13 | Received 13 Jul 2019, Accepted 17 Dec 2019, Published online: 26 Dec 2019

References

  • Bai, M. , Liu, H.P. , Zhu, S.D. , & Feng, H.H. (2012). Relative radiometric correction for remote sensing images based on multivariate alteration detection. Science of Surveying & Mapping . Beijing, China.
  • Canty, M.J. , & Nielsen, A.A. (2008). Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted MAD transformation. Remote Sensing of Environment , 112(3), 1025–1036. doi:10.1016/j.rse.2007.07.013
  • Chen, Q. , & Chen, Y. (2016). Multi-feature object-based change detection using self-adaptive weight change vector analysis. Remote Sensing , 8(7), 549. doi:10.3390/rs8070549
  • Gao, F. , Liu, X. , Dong, J. , Zhong, G. , & Jian, M. (2017). Change detection in SAR images based on deep semi-NMF and SVD networks. Remote Sensing , 9(5), 435. doi:10.3390/rs9050435
  • Gong, M. , Niu, X. , Zhang, P. , & Li, Z. (2017). Generative adversarial networks for change detection in multispectral imagery. IEEE Geoscience & Remote Sensing Letters , 14(12), 2310–2314. doi:10.1109/LGRS.2017.2762694
  • Gong, M. , Yang, Y. , Zhan, T. , Niu, X. , & Li, S. (2019). A generative discriminatory classified network for change detection in multispectral imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , PP(99), 1–13.
  • Gong, M. , Zhao, J. , Liu, J. , Miao, Q. , & Jiao, L. (2017). Change detection in synthetic aperture radar images based on deep neural networks. IEEE Transactions on Neural Networks & Learning Systems , 27(1), 125–138. doi:10.1109/TNNLS.2015.2435783
  • Gong, M. , Zhou, Z. , & Ma, J. (2012). Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering. Image Processing IEEE Transactions On , 21(4), 2141–2151. doi:10.1109/TIP.2011.2170702
  • Hichri, H. , Bazi, Y. , Alajlan, N. , & Malek, S. (2013). Interactive segmentation for change detection in multispectral remote-sensing images. IEEE Geoscience & Remote Sensing Letters , 10(2), 298–302. doi:10.1109/LGRS.2012.2204953
  • Hui, Z. (2008). A SAR image change detection algorithm based on principal component analysis. Journal of Electronics & Information Technology , 30(7), 1727–1730.
  • Jian, Z. , Fang, L. , & Ghamisi, P. (2018). Deformable convolutional neural networks for hyperspectral image classification. IEEE Geoscience & Remote Sensing Letters , 15(8), 1–5. doi: 10.1109/LGRS.2018.2830403.
  • Lei, C. , & Run-Geng, M.A. (2007). Detection of remote sensing image alteration based on canonical correlation analysis. Geological Bulletin of China , 292(1), 237–243.
  • Liang, L.I. , Wang, L. , Sun, X. , & Ying, G. (2017). Remote sensing change detection method based on object-oriented change vector analysis. Remote Sensing Information , 32(06), 71–77.
  • Maggiori, E. , Tarabalka, Y. , Charpiat, G. , & Alliez, P. (2016). Convolutional neural networks for large-scale remote sensing image classification. IEEE Transactions on Geoscience & Remote Sensing , 55(2), 645–657. doi:10.1109/TGRS.2016.2612821
  • Marpu, P.R. , Gamba, P. , & Canty, M.J. (2011). Improving change detection results of IR-MAD by eliminating strong changes. IEEE Geoscience & Remote Sensing Letters , 8(4), 799–803. doi:10.1109/LGRS.2011.2109697
  • Mishra, N.S. , Ghosh, S. , & Ghosh, A. (2012). Fuzzy clustering algorithms incorporating local information for change detection in remotely sensed images. Applied Soft Computing Journal , 12(8), 2683–2692. doi:10.1016/j.asoc.2012.03.060
  • Mou, L. , Bruzzone, L. , & Xiao, X.Z. (2018). Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery. IEEE Transactions on Geoscience and Remote Sensing , PP(99), 1–12.
  • Nielsen, A.A. , & Canty, M.J. (2009). Kernel principal component and maximum autocorrelation factor analyses for change detection. Image and Signal Processing for Remote Sensing XV . doi: 10.1117/12.829645
  • Niemeyer, I. , Marpu, P.R. , & Nussbaum, S. (2008). Change detection using object features (pp. 185–201). Barcelona, Spain: Springer Berlin Heidelberg.
  • Qiao, J.F. , Pan, G.Y. , & Han, H.G. (2015). Design and application of continuous deep belief network. Acta Automatica Sinica 41(12), 2138-2146.
  • Rosin, P.L. , & Ioannidis, E. (2003). Evaluation of global image thresholding for change detection. Pattern Recognition Letters , 24(14), 2345–2356. doi:10.1016/S0167-8655(03)00060-6
  • Roux, N.L. , & Bengio, Y. (2008). Representational power of restricted {B}oltzmann machines and deep belief networks. Neural Computation , 20(6), 1631–1649. doi:10.1162/neco.2008.04-07-510
  • Shi, A. , Gao, G. , & Shen, S. (2016). Change detection of bitemporal multispectral images based on FCM and D-S theory. Eurasip Journal on Advances in Signal Processing , 2016(1), 96. doi:10.1186/s13634-016-0397-0
  • Song, W. , Li, S. , Fang, L. , & Lu, T. (2018). Hyperspectral image classification with deep feature fusion network. IEEE Transactions on Geoscience & Remote Sensing , 56(6), 3173–3184. doi:10.1109/TGRS.2018.2794326
  • Sulla-Menashe, D. , Friedl, M.A. , & Woodcock, C.E. (2016). Sources of bias and variability in long-term Landsat time series over Canadian boreal forests. Remote Sensing of Environment , 177, 206–219. doi:10.1016/j.rse.2016.02.041
  • Wei, X.U. , & Yan-Tao, X.I. (2015). Research on land use classification in hefei based on Landsat 8 images. Hubei Agricultural Sciences . Hubei, China.
  • Wu, C. , & Du, B. (2015). Research on multi-level information change detection of remote sensing images . (PhD diss.). Wuhan University.
  • Xu, L. , Zhang, S. , He, Z. , & Guo, Y. (2009). The comparative study of three methods of remote sensing image change detection . International Conference on Geoinformatics, Fairfax, VA, USA.
  • Xu, Q. , Liu, Z. , Li, F. , Ren, H. , & Yang, M. (2016). The regularized iteratively reweighted object-based MAD method for change detection in bi-temporal, multispectral data . Proceedings of the Spie, 156. Beijing, China.
  • Yan-Hong, A.O. , Pei, H. , Wang, Y.L. , & Yun-Peng, L.I. (2010). Monitoring on land cover dynamics of hunshandake sandland by remote sensing. Journal of Desert Research , 30(1), 33–39.
  • Yonezawa, C. (2007). Maximum likelihood classification combined with spectral angle mapper algorithm for high resolution satellite imagery. International Journal of Remote Sensing , 28(16), 3729–3737. doi:10.1080/01431160701373713
  • Zhang, J.X. , & Yang, G.J. (2005). Automatic land use and land cover change detection with one temporary remote sensing image. Journal of Remote Sensing , 9(3), 294-299.
  • Zhuang, H. , Deng, K. , & Fan, H. (2016). Filtering approach based on voter model and spatial-contextual information to the binary change map in SAR images. Journal of the Indian Society of Remote Sensing , 45(5), 733–741. doi:10.1007/s12524-016-0639-5
  • Zhuang, H. , Deng, K. , Fan, H. , & Ma, S. (2018). A novel approach based on structural information for change detection in SAR images. International Journal of Remote Sensing , 39(8), 2341–2365. doi:10.1080/01431161.2017.1421794
  • Zhuang, H. , Deng, K. , Yu, Y. , & Fan, H. (2017). An approach based on discrete wavelet transform to unsupervised change detection in multispectral images. International Journal of Remote Sensing , 38(17), 4914–4930. doi:10.1080/01431161.2017.1331475