234
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Solar energy potential mapping in Ukraine through integration of GIS, remote sensing, and fuzzy logic

&
Article: 2362390 | Received 25 Oct 2023, Accepted 28 May 2024, Published online: 04 Jun 2024

References

  • Adeh, E. H., Good, S. P., Calaf, M., & Higgins, C. W. (2019). Solar PV power potential is greatest over croplands. Scientific Reports, 9(1), 11442. https://doi.org/10.1038/s41598-019-47803-3
  • Besarati, S. M., Padilla, R. V., Goswami, D. Y., & Stefanakos, E. K. (2013). The potential of harnessing solar radiation in Iran: Generating solar maps and viability study of PV power plants. Renewable Energy, 53, 193–25. https://doi.org/10.1016/j.renene.2012.11.012
  • Butenko, O., Zvyaschenko, K., Buravchenko, K., & Nikitin, A. (2019). Optimization of the process of selecting the location of solar power plants using GIS analysis. Sistemi Upravlìnnâ, Navìgacìï Ta Zvʼâzku, 1(53), 17–21. https://doi.org/10.26906/sunz.2019.1.017
  • Cheng, C., & Thompson, R. G. (2016). Application of boolean logic and GIS for determining suitable locations for temporary disaster waste management sites. International Journal of Disaster Risk Reduction, 20, 78–92. https://doi.org/10.1016/j.ijdrr.2016.10.011
  • Chitturi, S. R. P., Sharma, E., & Elmenreich, W. (2018). Efficiency of photovoltaic systems in mountainous areas. 2018 IEEE International Energy Conference (ENERGYCON). https://doi.org/10.1109/energycon.2018.8398766
  • Colak, H. E., Memişoğlu, T., & Gercek, Y. (2020). Optimal site selection for solar photovoltaic (PV) power plants using GIS and AHP: A case study of Malatya Province, Turkey. Renewable Energy, 149, 565–576. https://doi.org/10.1016/j.renene.2019.12.078
  • Cooper, C. W. P. Z., & Gritzner, C. F. (2007). Ukraine. Chelsea House. Retrieved January 13, 2024 from http://site.ebrary.com/id/10284385
  • Deveci, M., Cali, U., & Pamucar, D. (2021). Evaluation of criteria for site selection of solar photovoltaic (PV) projects using fuzzy logarithmic additive estimation of weight coefficients. Energy Reports, 7, 8805–8824. https://doi.org/10.1016/j.egyr.2021.10.104
  • Dhunny, A., Doorga, J. R. S., Allam, Z., Lollchund, M. R., & Boojhawon, R. (2019). Identification of optimal wind, solar and hybrid wind-solar farming sites using fuzzy logic modelling. Energy, 188, 116056. https://doi.org/10.1016/j.energy.2019.116056
  • Dupraz, C., Marrou, H., Talbot, G., Dufour, L., Nogier, A., & Ferard, Y. (2011). Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renewable Energy, 36(10), 2725–2732. https://doi.org/10.1016/j.renene.2011.03.005
  • Energy Charter Secretariat. (2023). Ukrainian Energy Sector Evaluation and Damage Assessment - X (As Of May 24, 2023). https://files.taylorandfrancis.com/tf_APA.pdf?_ga=2.254438347.232578801.1704753507-1178805871.1704753507
  • Ershad, A. M., Brecha, R. J., & Hallinan, K. P. (2016). Analysis of solar photovoltaic and wind power potential in Afghanistan. Renewable Energy, 85, 445–453. https://doi.org/10.1016/j.renene.2015.06.067
  • Fazelpour, F., Vafaeipour, M., Rahbari, O., & Shirmohammadi, R. (2013). Considerable parameters of using PV cells for solar-powered aircrafts. Renewable and Sustainable Energy Reviews, 22, 81–91. https://doi.org/10.1016/j.rser.2013.01.016
  • Fouad, M. M., Shihata, L. A., & Morgan, E. I. (2017). An integrated review of factors influencing the perfomance of photovoltaic panels. Renewable and Sustainable Energy Reviews, 80, 1499–1511. https://doi.org/10.1016/j.rser.2017.05.141
  • Garni, H. Z. A., & Awasthi, A. (2017). Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia. Applied Energy, 206, 1225–1240. https://doi.org/10.1016/j.apenergy.2017.10.024
  • Ghasemi, G., Noorollahi, Y., Alavi, H., Marzband, M., & Shahbazi, M. (2019). Theoretical and technical potential evaluation of solar power generation in Iran. Renewable Energy, 138, 1250–1261. https://doi.org/10.1016/j.renene.2019.02.068
  • Global Power Plant Database - Data | World Resources Institute. (n.d.). https://datasets.wri.org/dataset/globalpowerplantdatabase
  • Gökmen, N., Hu, W., Hou, P., Chen, Z., Sera, D., & Spataru, S. (2016). Investigation of wind speed cooling effect on PV panels in windy locations. Renewable Energy, 90, 283–290. https://doi.org/10.1016/j.renene.2016.01.017
  • Ibrahim, A., Fudholi, A., Sopian, K., Othman, M., & Ruslan, M. H. (2014). Efficiencies and improvement potential of building integrated photovoltaic thermal (BIPVT) system. Energy Conversion and Management, 77, 527–534. https://doi.org/10.1016/j.enconman.2013.10.033
  • Idoko, L., Anaya-Lara, O., & McDonald, A. (2018). Enhancing PV modules efficiency and power output using multi-concept cooling technique. Energy Reports, 4, 357–369. https://doi.org/10.1016/j.egyr.2018.05.004
  • Kazem, H. A., & Chaichan, M. T. (2015). Effect of humidity on photovoltaic performance based on experimental study. International Journal of Applied Engineering Research (IJAER), 10(23), 43572–43577. https://doi.org/10.1016/j.matpr.2020.08.775
  • Kiefer, C. P., & Del Río, P. (2020). Analysing the barriers and drivers to concentrating solar power in the European Union. Policy implications. Journal of Cleaner Production, 251, 119400. https://doi.org/10.1016/j.jclepro.2019.119400
  • Koç, A., Turk, S., & Şahin, G. (2019). Multi-criteria of wind-solar site selection problem using a GIS-AHP-based approach with an application in Igdir Province/Turkey. Environmental Science and Pollution Research, 26(31), 32298–32310. https://doi.org/10.1007/s11356-019-06260-1
  • Kussul, N., Lemoine, G., Gallego, J., Skakun, S., & Lavreniuk, M. (2015). Parcel based classification for agricultural mapping and monitoring using multi-temporal satellite image sequences. IEEE International Geoscience and Remote Sensing Symposium (IGARSS). https://doi.org/10.1109/igarss.2015.7325725
  • Laha, S. K., Sadhu, P. K., Dhar, R. S., Dey, R., Bhattacharya, S., Ganguly, A., & Naskar, A. K. (2021). Analysis of mechanical stress and structural deformation on a solar photovoltaic panel through various wind loads. Microsystem Technologies, 27(9), 3465–3474. https://doi.org/10.1007/s00542-020-05142-8
  • López-Bravo, C., Mora-López, L., Sidrach DeCardona, M., & Márquez-Ballesteros, M. J. (2024). A comprehensive analysis based on GIS-AHP to minimise the social and environmental impact of the installation of large-scale photovoltaic plants in south Spain. Renewable Energy, 226, 120387. https://doi.org/10.1016/j.renene.2024.120387
  • Mahtta, R., Joshi, P. K., & Jindal, A. K. (2014). Solar power potential mapping in India using remote sensing inputs and environmental parameters. Renewable Energy, 71, 255–262. https://doi.org/10.1016/j.renene.2014.05.037
  • Malczewski, J. (2011). Local weighted linear combination. Transactions in GIS, 15(4), 439–455. https://doi.org/10.1111/j.1467-9671.2011.01275.x
  • Mekhilef, S., Saidur, R., & Kamalisarvestani, M. (2012). Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renewable and Sustainable Energy Reviews, 16(5), 2920–2925. https://doi.org/10.1016/j.rser.2012.02.012
  • Mhundwa, R., Simon, M., & Yongoua, J. N. (2020). The electrical energy impact of small-scale onsite generation: A case study of a 75 kWp grid-tied PV system. Journal of Energy in Southern Africa, 31(4), 1–15. https://doi.org/10.17159/2413-3051/2020/v31i4a8808
  • Miguel, G. S., & Corona, B. (2018). Economic viability of concentrated solar power under different regulatory frameworks in Spain. Renewable and Sustainable Energy Reviews, 91, 205–218. https://doi.org/10.1016/j.rser.2018.03.017
  • Ministry of Agrarian Policy and Food of Ukraine. (2023). Crop map of Ukraine 2022. Ukraine-cropmaps. https://ukraine-cropmaps.com/
  • Miskin, C. K., Li, Y., Perna, A., Ellis, R. G., Grubbs, E. K., Bermel, P., & Agrawal, R. (2019). Sustainable co-production of food and solar power to relax land-use constraints. Nature Sustainability, 2(10), 972–980. https://doi.org/10.1038/s41893-019-0388-x
  • Mostafaeipour, A., Qolipour, M., Rezaei, M., Jahangiri, M., Goli, A., & Sedaghat, A. (2020). A novel integrated approach for ranking solar energy location planning: A case study. Journal of Engineering, Design & Technology, 19(3), 698–720. https://doi.org/10.1108/jedt-04-2020-0123
  • Mustafa, R. J., Gomaa, M. R., Al-Dhaifallah, M., & Rezk, H. (2020). Environmental impacts on the performance of solar photovoltaic systems. Sustainability, 12(2), 608. https://doi.org/10.3390/su12020608
  • Norwood, Z., Nyholm, E., Otanicar, T., Johnsson, F., & Rao, Z. (2014). A geospatial comparison of distributed solar heat and power in Europe and the US. Public Library of Science ONE, 9(12), e112442. https://doi.org/10.1371/journal.pone.0112442
  • Prieto‐Amparán, J. A., Pinedo-Álvarez, A., Morales-Nieto, C. R., Valles-Aragón, M. C., Álvarez-Holguín, A., & Villarreal‐Guerrero, F. (2021). A regional GIS-Assisted multi-criteria evaluation of site-suitability for the development of solar farms. The Land, 10(2), 217. https://doi.org/10.3390/land10020217
  • Rafique, M. M., Rehman, S., & Alhems, L. M. (2020). Assessment of solar energy potential and its deployment for cleaner production in Pakistan. Journal of Mechanical Science and Technology, 34(8), 3437–3443. https://doi.org/10.1007/s12206-020-0736-9
  • Ruiz, H. S., Sunarso, A., Ibrahim-Bathis, K., Murti, S., & Budiarto, I. (2020). GIS-AHP multi criteria decision analysis for the optimal location of solar energy plants at Indonesia. Energy Reports, 6, 3249–3263. https://doi.org/10.1016/j.egyr.2020.11.198
  • Saaty, T. L. (1990). The analytic hierarchy process: planning, priority setting, resource allocation. International Journal of Conflict Management, 1(1), 47–68. https://doi.org/10.1108/eb022672
  • Saraçoğlu, B. Ö., Ohunakin, O. S., Adelekan, D. S., Gill, J., Atiba, O. E., Okokpujie, I. P., & Atayero, A. A. (2018). A framework for selecting the location of very large photovoltaic solar power plants on a global/supergrid. Energy Reports, 4, 586–602. https://doi.org/10.1016/j.egyr.2018.09.002
  • Seyedmohammadi, J., & Navidi, M. N. (2022). Applying fuzzy inference system and analytic network process based on GIS to determine land suitability potential for agricultural. Environmental Monitoring and Assessment, 194(10). https://doi.org/10.1007/s10661-022-10327-x
  • Seyedmohammadi, J., Sarmadian, F., Jafarzadeh, A. A., & McDowell, R. W. (2018). Integration of ANP and Fuzzy set techniques for land suitability assessment based on remote sensing and GIS for irrigated maize cultivation. Archives of Agronomy and Soil Science/Archiv Für Acker- Und Pflanzenbau Und Bodenkunde, 65(8), 1063–1079. https://doi.org/10.1080/03650340.2018.1549363
  • Sharma, S., Jain, K. K., & Sharma, A. (2015). Solar cells: In research and applications—a review. Materials Sciences and Applications, 6(12), 1145. https://doi.org/10.4236/msa.2015.612113
  • Shelestov, A., Yailymov, B., Yailymova, H., Nosok, S., & Piven, O. (2021, April). Cloud-Based Technologies for Data Processing in Ukraine: International Context. International Scientific and Technical Conference-Modern Challenges in Telecommunications (pp. 101–118). Springer International Publishing, Cham. https://doi.org/10.1007/978-3-031-16368-5_5
  • Shorabeh, S. N., Firozjaei, M. K., Nematollahi, O., Firozjaei, H. K., & Jelokhani-Niaraki, M. (2019). A risk-based multi-criteria spatial decision analysis for solar power plant site selection in different climates: A case study in Iran. Renewable Energy, 143, 958–973. https://doi.org/10.1016/j.renene.2019.05.063
  • Stevović, I., Mirjanić, D., & Stevović, S. (2019). Possibilities for wider investment in solar energy implementation. Energy, 180, 495–510. https://doi.org/10.1016/j.energy.2019.04.194
  • Tafula, J. E., Justo, C. D., Moura, P., Mendes, J., & Soares, A. (2023). Multicriteria Decision-Making approach for optimum site selection for Off-Grid solar photovoltaic microgrids in Mozambique. Energies, 16(6), 2894. https://doi.org/10.3390/en16062894
  • Taoufik, M., Meriem, L., & Fekri, A. (2021). Land suitability analysis for solar farms exploitation using the GIS and Analytic Hierarchy Process (AHP) – a case study of Morocco. Polityka Energetyczna, 24(2), 79–96. https://doi.org/10.33223/epj/133474
  • Triantaphyllou, E., Lootsma, F. A., Pardalos, P. M., & Mann, S. (1994). On the evaluation and application of different scales for quantifying pairwise comparisons in fuzzy sets. Journal of Multi-Criteria Decision Analysis, 3(3), 133–155. https://doi.org/10.1002/mcda.4020030302
  • Ukrinform. (2022, October 23). As a result of the full-scale invasion of Russia, 90% of wind power and 45-50% of solar power in Ukraine have been decommissioned. ukrinform.Ua. Retrieved January 9, 2024, from https://www.ukrinform.ua/rubric-economy/3599368-cerez-vijnu-v-ukraini-90-potuznostej-vitrovoi-energetiki-vivedeni-z-ekspluatacii-galusenko.html
  • Ukrinform. (2023). Generation lost 27 GW of installed capacity as of May - Ukrenergo. ukrinform.Ua. Retrieved September 23, 2023, from https://www.ukrinform.ua/rubric-economy/3714703-generacia-stanom-na-traven-vtratila-27-gvt-vstanovlenoi-potuznosti-ukrenergo.html
  • Wang, C., Van Thanh, N., Thai, H. T. N., & Duong, D. H. (2018). Multi-criteria decision Making (MCDM) approaches for solar power plant location selection in viet nam. Energies, 11(6), 1504. https://doi.org/10.3390/en11061504
  • Weselek, A., Ehmann, A., Zikeli, S., Lewandowski, I., Schindele, S., & Högy, P. (2019). Agrophotovoltaic systems: Applications, challenges, and opportunities. A review. Agronomy for Sustainable Development, 39(4), 1–20. https://doi.org/10.1007/s13593-019-0581-3
  • Yelisieieva, O. K., & Khazan, P. V. (2016). Economic and statistical analysis of solar energy in Ukrainian regions. Statystyka Ukrainy, 4, 51–58. http://nbuv.gov.ua/UJRN/su_2016_4_10
  • Yousefi, H., Hafeznia, H., & Yousefi-Sahzabi, A. (2018). Spatial site selection for solar power plants using a GIS-Based boolean-fuzzy logic model: A case study of Markazi Province, Iran. Energies, 11(7), 1648. https://doi.org/10.3390/en11071648
  • Zambrano-Asanza, S., Quiros-Tortos, J., & Franco, J. F. (2021). Optimal site selection for photovoltaic power plants using a GIS-based multi-criteria decision making and spatial overlay with electric load. Renewable and Sustainable Energy Reviews, 143, 110853. https://doi.org/10.1016/j.rser.2021.110853
  • Zoghi, M., Ehsani, A. H., Sadat, M., Amiri, M. J., & Karimi, S. (2017). Optimization solar site selection by fuzzy logic model and weighted linear combination method in arid and semi-arid region: A case study Isfahan-IRAN. Renewable and Sustainable Energy Reviews, 68, 986–996. https://doi.org/10.1016/j.rser.2015.07.014