69
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Self-supervised change detection of heterogeneous images based on difference algorithms

, , , , &
Article: 2372854 | Received 05 Mar 2024, Accepted 23 Jun 2024, Published online: 01 Jul 2024

References

  • Agapiou, A. (2020). Evaluation of Landsat 8 OLI/TIRS level-2 and sentinel 2 level-1C fusion techniques intended for image segmentation of archaeological landscapes and proxies. In A. Agapiou (Ed.), Remote Sensing, 12(3), 579. https://doi.org/10.3390/rs12030579
  • Asokan, A., & Anitha, J. (2019). Change detection techniques for remote sensing applications: A survey. Earth Science Informatics (Vol. 12, pp. 143–21).
  • Baik, S.-H., Park, S.-K., Kim, C.-J., & Kim, S.-Y. (2001). Two-channel spatial phase shifting electronic speckle pattern interferometer. Optics Communications, 192(3–6), 205–211. https://doi.org/10.1016/S0030-4018(01)01223-8
  • Chen, H., Yokoya, N., Wu, C., & Du, B. (2022). Unsupervised multimodal change detection based on structural relationship graph representation learning. IEEE transactions on geoscience and remote sensing (Vol. 60, pp. 1–18).
  • Chen, Y., Ming, Z., & Menenti, M. (2020). Change detection algorithm for multi-temporal remote sensing images based on adaptive parameter estimation. Institute of Electrical and Electronics Engineers Access, 8, 106083–106096. https://doi.org/10.1109/ACCESS.2020.2993910
  • Davari, N., Akbarizadeh, G., & Mashhour, E. (2021). Corona detection and power equipment classification based on GoogleNet-AlexNet: An accurate and intelligent defect detection model based on deep learning for power distribution lines. IEEE Transactions on Power Delivery, 37(4), 2766–2774. https://doi.org/10.1109/TPWRD.2021.3116489
  • Dong, H., Ma, W., Wu, Y., Zhang, J., & Jiao, L. (2020). Self-supervised representation learning for remote sensing image change detection based on temporal prediction. Remote Sensing, 12(11), 1868. https://doi.org/10.3390/rs12111868
  • Du, Z., Li, X., Miao, J., Huang, Y., Shen, H., & Zhang, L. (2023). Concatenated deep learning framework for multi-task change detection of optical and SAR Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (Vol. 17, pp. 719–731).
  • Fan, J., Zhang, M., Chen, J., Zuo, J., Shi, Z., & Ji, M. (2023). Building change detection with deep learning by fusing spectral and texture features of multisource remote sensing images: A GF-1 and sentinel 2B data case. Remote Sensing, 15(9), 2351.
  • Ferraris, V., Dobigeon, N., & Chabert, M. (2020). Robust fusion algorithms for unsupervised change detection between multi-band optical images—A comprehensive case study. In V. Ferraris, N. Dobigeon, & M. Chabert (Eds.), Information Fusion (Vol. 64, pp. 293–317).
  • Fu, Y., Yang, S., Li, Y., Yan, H., & Zheng, Y. (2023). A novel SAR and optical image fusion algorithm based on an improved SPCNN and phase congruency information. International Journal of Remote Sensing, 44(4), 1328–1347. https://doi.org/10.1080/01431161.2023.2179899
  • Gao, F., Dong, J., Li, B., Xu, Q., & Xie, C. (2016). Change detection from synthetic aperture radar images based on neighborhood-based ratio and extreme learning machine. Journal of Applied Remote Sensing, 10(4), 046019–046019. https://doi.org/10.1117/1.JRS.10.046019
  • Gao, F., Wang, X., Gao, Y., Dong, J., Wang, S. J. I. G., & Letters, R. S. (2019). Sea ice change detection in SAR images based on convolutional-wavelet neural networks. IEEE Geoscience and Remote Sensing Letters, 16(8), 1240–1244. https://doi.org/10.1109/LGRS.2019.2895656
  • Geng, J., Ma, X., Zhou, X., & Wang, H. (2019). Saliency-guided deep neural networks for SAR image change detection. IEEE Transactions on Geoscience and Remote Sensing, 57(10), 7365–7377. https://doi.org/10.1109/TGRS.2019.2913095
  • Hao, F., Feng, Y., & Guan, Y. J. C. (2019). A novel botulinum toxin TAT-EGFP-HCS fusion protein capable of specific delivery through the blood-brain barrier to the central nervous system. Cns\& Neurological Disorders-Drug Targets, 18(1), 37–43. https://doi.org/10.2174/1871527317666181011113215
  • Hou, Z., Li, W., Tao, R., & Du, Q. (2021). Three-order tucker decomposition and reconstruction detector for unsupervised hyperspectral change detection. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 6194–6205. https://doi.org/10.1109/JSTARS.2021.3088438
  • Jiang, A., Dai, J., Yu, S., Zhang, B., Xie, Q., & Zhang, H. (2022). Unsupervised change detection around subways based on sar combined difference images. Remote Sensing, 14(17), 4419.
  • Jiang, X., Li, G., Liu, Y., Zhang, X.-P., & He, Y. (2020). Change detection in heterogeneous optical and SAR remote sensing images via deep homogeneous feature fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (Vol. 13. pp. 1551–1566).
  • Lantzanakis, G., Mitraka, Z., & Chrysoulakis, N. (2020). X-SVM: An extension of C-SVM algorithm for classification of high-resolution satellite imagery. IEEE transactions on geoscience and remote sensing (Vol. 59. pp. 3805–3815).
  • Li, H., Zhu, F., Zheng, X., Liu, M., & Chen, G. (2022). MSCDUNet: A deep learning framework for built-up area change detection integrating multispectral, SAR, and VHR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 5163–5176. https://doi.org/10.1109/JSTARS.2022.3181155
  • Li, X., Du, Z., Huang, Y., & Tan, Z. (2021). A deep translation (GAN) based change detection network for optical and SAR remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 179, 14–34. https://doi.org/10.1016/j.isprsjprs.2021.07.007
  • Li, Y., Li, X., Song, J., Wang, Z., He, Y., & Yang, S. (2023). Remote-sensing-based change detection using change vector analysis in posterior probability space: A context-sensitive bayesian network approach. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 3198–3217. https://doi.org/10.1109/JSTARS.2023.3260112
  • Liu, J., Gong, M., Qin, K., & Zhang, P. (2016). A deep convolutional coupling network for change detection based on heterogeneous optical and radar images. IEEE transactions on neural networks and learning systems (Vol. 29. pp. 545–559).
  • Liu, Y.-W., & Chen, H. (2022). A fast and efficient change-point detection framework based on approximate $ k $-nearest neighbor graphs. IEEE Transactions on Signal Processing, 70, 1976–1986. https://doi.org/10.1109/TSP.2022.3162120
  • Longbotham, N., Pacifici, F., Glenn, T., Zare, A., Volpi, M., Tuia, D., Christophe, E., Michel, J., Inglada, J., & Chanussot, J. (2012). Multi-modal change detection, application to the detection of flooded areas: Outcome of the 2009–2010 data fusion contest. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (Vol. 5. pp. 331–342).
  • Lv, Z., Huang, H., Li, X., Zhao, M., Benediktsson, J. A., Sun, W., & Falco, N. J. P. O. T. I. (2022). Land cover change detection with heterogeneous remote sensing images: Review, progress, and perspective. Proceedings of the IEEE, 110(12), 1976–1991. https://doi.org/10.1109/JPROC.2022.3219376
  • Mastro, P., Masiello, G., Serio, C., & Pepe, A. (2022). Change detection techniques with synthetic aperture radar images: Experiments with random forests and sentinel-1 observations. Remote Sensing, 14(14), 3323. https://doi.org/10.3390/rs14143323
  • Matikainen, L., Hyyppä, J., & Litkey, P. (2016). Multispectral airborne laser scanning for automated map updating. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41, 323–330. https://doi.org/10.5194/isprs-archives-XLI-B3-323-2016
  • Mignotte, M. (2020). A fractal projection and Markovian segmentation-based approach for multimodal change detection. IEEE transactions on geoscience and remote sensing, 58(11), 8046–8058.
  • Niu, X., Gong, M., Zhan, T., & Yang, Y. (2018). A conditional adversarial network for change detection in heterogeneous images. IEEE Geoscience and Remote Sensing Letters,16(1), 45–49.
  • Ou, X., Liu, L., Tu, B., Zhang, G., & Xu, Z. (2022). A CNN framework with slow-fast band selection and feature fusion grouping for hyperspectral image change detection. IEEE transactions on geoscience and remote sensing, 60, 1–16.
  • Pan, J., Cui, W., An, X., Huang, X., Zhang, H., Zhang, S., Zhang, R., Li, X., Cheng, W., Hu, Y. (2022). MapsNet: Multi-level feature constraint and fusion network for change detection. International Journal of Applied Earth Observation and Geoinformation (Vol. 108, p. 102676).
  • Pan, J., Li, X., Cai, Z., Sun, B., & Cui, W. (2022). A self-attentive hybrid coding network for 3D change detection in high-resolution optical stereo images. Remote Sensing, 14(9), 2046. https://doi.org/10.3390/rs14092046
  • Roy, S. K., Deria, A., Hong, D., Rasti, B., Plaza, A., & Chanussot, J. (2023). Multimodal fusion transformer for remote sensing image classification. IEEE Transactions on Geoscience and Remote Sensing, 61, 1–20. https://doi.org/10.1109/TGRS.2023.3286826
  • Samadi, F., Akbarizadeh, G., & Kaabi, H. (2019). Change detection in SAR images using deep belief network: A new training approach based on morphological images. IET Image Processing, 13(12), 2255–2264. https://doi.org/10.1049/iet-ipr.2018.6248
  • Seo, D. K., Kim, Y. H., Eo, Y. D., Lee, M. H., & Park, W. Y. (2018). Fusion of SAR and multispectral images using random forest regression for change detection. ISPRS International Journal of Geo-Information, 7(10), 401. https://doi.org/10.3390/ijgi7100401
  • Shi, J., Liu, X., Yang, S., Lei, Y., & Tian, D. (2021). An initialization friendly Gaussian mixture model based multi-objective clustering method for SAR images change detection. Journal of Ambient Intelligence and Humanized Computing, 1–13.
  • Shi, J., Wu, T., Yu, H., Qin, A. K., Jeon, G., & Lei, Y. (2023). Multi-layer composite autoencoders for semi-supervised change detection in heterogeneous remote sensing images. Science China Information Sciences (Vol. 66, p. 140308).
  • Shirani, K., Solhi, S., & Pasandi, M. (2023). Automatic landform recognition, extraction, and classification using kernel pattern modeling. Journal of Geovisualization and Spatial Analysis, 7(1), 2.
  • Sun, Y., Lei, L., Guan, D., & Kuang, G. (2021). Iterative robust graph for unsupervised change detection of heterogeneous remote sensing images. IEEE Transactions on Image Processing, 30, 6277–6291. https://doi.org/10.1109/TIP.2021.3093766
  • Sun, Y., Lei, L., Guan, D., Kuang, G., & Liu, L. (2022). Graph signal processing for heterogeneous change detection. IEEE Transactions on Image Processing, 60, 1–23.
  • Sun, Y., Lei, L., Guan, D., Li, M., & Kuang, G. (2021). Sparse-constrained adaptive structure consistency-based unsupervised image regression for heterogeneous remote-sensing change detection. IEEE transactions on geoscience and remote sensing, 60, 1–14.
  • Sun, Y., Lei, L., Guan, D., Wu, J., & Kuang, G. (2022). Iterative robust graph for unsupervised change detection of heterogeneous remote sensing images. Pattern Recognition (Vol. 131, p. 108845).
  • Sun, Y., Lei, L., Li, X., Tan, X., & Kuang, G. (2021). Structure consistency-based graph for unsupervised change detection with homogeneous and heterogeneous remote sensing images. IEEE transactions on geoscience and remote sensing, 60, 1–21.
  • Sun, Y., Lei, L., Liu, L., Kuang, G., Ren, K., & Peng, J. (2023). Coupled temporal variation information estimation and resolution enhancement for remote sensing spatial–temporal–spectral fusion. IEEE Transactions on Geoscience Remote Sensing, 61, 1–18. https://doi.org/10.1109/TGRS.2023.3335418
  • Tang, X., Zhang, H., Mou, L., Liu, F., Zhang, X., Zhu, X. X., & Jiao, L. (2021). An unsupervised remote sensing change detection method based on multiscale graph convolutional network and metric learning. IEEE transactions on geoscience and remote sensing (Vol. 60, pp. 1–15).
  • Wang, Z., Ziou, D., Armenakis, C., Li, D., & Li, Q. (2005). A comparative analysis of image fusion methods. IEEE Transactions on Geoscience and Remote Sensing, 43(6), 1391–1402. https://doi.org/10.1109/TGRS.2005.846874
  • Wu, J., Li, B., Qin, Y., Ni, W., Zhang, H., Fu, R., & Sun, Y. (2021). A multiscale graph convolutional network for change detection in homogeneous and heterogeneous remote sensing images. International Journal of Applied Earth Observation and Geoinformation, 105, 102615.
  • Wu, S., & Chow, T. W. (2004). Clustering of the self-organizing map using a clustering validity index based on inter-cluster and intra-cluster density. Pattern Recognition, 37(2), 175–188. https://doi.org/10.1016/S0031-3203(03)00237-1
  • Xu, D., Li, M., Wu, Y., Zhang, P., Xin, X., & Yang, Z. (2023). Difference-guided multiscale graph convolution network for unsupervised change detection in PolSAR images. Neurocomputing, 555, 126611.
  • Xuan, J., Xin, Z., Liao, G., Huang, P., Wang, Z., & Sun, Y. (2022). Change detection based on fusion difference image and multi-scale morphological reconstruction for SAR images. Remote Sensing, 14(15), 3604.
  • Ye, S., Chen, D., & Yu, J. (2016). A targeted change-detection procedure by combining change vector analysis and post-classification approach. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 115–124. https://doi.org/10.1016/j.isprsjprs.2016.01.018
  • Yin, H., Ma, C., Weng, L., Xia, M., & Lin, H. (2023). Bitemporal remote sensing image change detection network based on siamese-attention feedback architecture. Remote Sensing, 15(17), 4186. https://doi.org/10.3390/rs15174186
  • Zhan, T., Gong, M., Jiang, X., & Li, S. (2018). Log-based transformation feature learning for change detection in heterogeneous images. IEEE Geoscience and Remote Sensing Letters, 15(9), 1352–1356. https://doi.org/10.1109/LGRS.2018.2843385
  • Zheng, X., Chen, X., Lu, X., & Sun, B. (2021). Unsupervised change detection by cross-resolution difference learning. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–16. https://doi.org/10.1109/TGRS.2021.3079907
  • Zhuang, H., Fan, H., Deng, K., & Yu, Y. (2018). An improved neighborhood-based ratio approach for change detection in SAR images. European Journal of Remote Sensing, 51(1), 723–738. https://doi.org/10.1080/22797254.2018.1482523