99
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Evaluation of Multitudinous Potentials of Photosynthetic Microalga, Neochloris aquatica RDS02 Derived Silver Nanoparticles

ORCID Icon, ORCID Icon, &
Pages 116-129 | Received 01 Apr 2018, Accepted 19 Jun 2018, Published online: 26 Jun 2018

References

  • Song JY, Kwon EY, Kim BS. Biological synthesis of platinum nano-particles using Diopyros kaki leaf extract. Bioprocess Biosyst Eng. 2010;33:159–164.10.1007/s00449-009-0373-2
  • Darroudi M, Zak AM, Muhamad MR, et al. Green synthesis of colloidal silver nanoparticles by sonochemical method. Mater Lett. 2012;66:117–120.10.1016/j.matlet.2011.08.016
  • Mahdavi M, Ahmad MB, Haron MJ, et al. Synthesis, surface modification and characterization of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 2013;18:7533–7548.10.3390/molecules18077533
  • Govindaraju K, Kiruthiga V, Kumar VG, et al. Extracellular synthesis of silver nanoparticles by a marine alga, Sargassum wightii Grevilli and their antibacterial effects. J Nanosci Nanotechnol. 2009;9:5497–5501.10.1166/jnn.2009.1199
  • Rajathi F, Parthiban C, Ganesh Kumar V, et al. Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kützing). Spectrochim Acta Part A 2012;99:166–173.10.1016/j.saa.2012.08.081
  • Shameli K, Ahmad MB, Zamanian A, et al. Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. Int J Nanomed. 2012;7:5603–5610.10.2147/IJN
  • Willner I, Basnar B, Willner B. Nanoparticle-enzyme hybrid systems for nanobiotechnology. Fed Eur Biochem Soc J. 2007;4:302–309.
  • Saifuddin N, Wong CW, Yasumira AANE. Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. Eur J Chem. 2009;6:61–70.
  • Khan M, Khan M, Adil SF, et al. Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract. Int J Nanomed. 2013;8:1507–1516.
  • Hayward RC, Saville DA, Aksay IA. Electrophoretic assembly of colloidal crystals with optically tunable micro-patterns. Nature 2000;404:56–59.10.1038/35003530
  • Lohse SE, Murphy CJ. Applications of colloidal inorganic nanoparticles: from medicine to energy. J Am Chem Soc. 2012;134:15607–15620.10.1021/ja307589n
  • You C, Han C, Wang X, et al. The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep. 2012;39:9193–9201.10.1007/s11033-012-1792-8
  • Santhosh SB, Yuvarajan R, Natarjan D. Annona muricata leaf extract-mediated silver nanoparticles synthesis and its larvicidal potential against dengue, malaria and filariasis vector. Parasitol Res. 2015;114:3087–3096.10.1007/s00436-015-4511-2
  • Martínez-Gutierrez F, Thi EP, Silverman JM, et al. Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomedicine 2012;8:328–336.10.1016/j.nano.2011.06.014
  • Park M, Im J, Shin M, et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat Nanotechnol. 2012;7:803–809.10.1038/nnano.2012.206
  • Gottesman R, Shukla S, Perkas N, et al. Sonochemical coating of paper by microbicidal silver nanoparticles. Langmuir- Am Chem Soc. 2011;27:720–726.
  • Ahmad AL, Mat Yasin NH, Derek CJC, et al. Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sustain Energy Rev. 2011;15:584–593.10.1016/j.rser.2010.09.018
  • Kim MK, Jeune KH. Use of FT-IR to identify enhancedbiomass production and biochemical pool shifts in the marine microalgae, Chlorella ovalis, cultured in media composed of different ratios of deep seawater and fermented animal wastewater. J Microbiol Biotechnol. 2009;19:1206–1212.
  • Mata TM, Martins AA, Caetano SN. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev. 2010;14:217–232.10.1016/j.rser.2009.07.020
  • Jegadeeswaran P, Shivaraj R, Venckatesha R. Green synthesis of silver nanoparticles from extract of Padina tetrastromatica leaf. Digest J Nanomater Biostructures 2012;7:991–998.
  • Jena J, Nayak M, Panda HS, et al. Microalgae of Odisha Coast as a potential source for biodiesel production. World Env J. 2012;2:12–17.10.5923/j.env.20120201.03
  • Parial D, Patra HK, Roychoudhury P, et al. Gold nanorod production by cyanobacteria - a green chemistry approach. J Appl Phycol. 2012;24:55–60.10.1007/s10811-010-9645-0
  • Luangpipat T, Beattie IR, Chisti Y, et al. Gold nanoparticles produced in a microalga. J Nanopart Res. 2011;13:6439–6445.10.1007/s11051-011-0397-9
  • Wiley B, Sun Y, Xia Y. Synthesis of silver nanostructures with controlled shapes and properties. Acc Chem Res. 2007;40:1067–1076.10.1021/ar7000974
  • Xie J, Lee JY, Wang DIC, et al. Silver nanoplates: from biological to biomimetic synthesis. Ame Chem Soc- Nano 2007;1:429–439.
  • de Aragão AP, de Oliveira TM, Quelemes PV, et al. Green synthesis of silver nanoparticles using the seaweed Gracilaria birdiae and their antibacterial activity. Arabian J Chem. 2016. DOI:10.1016/j.arabjc.2016.04.014.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55–63.10.1016/0022-1759(83)90303-4
  • Winnicka F, Bielawski K, Bielawska A, et al. Apoptosis-mediated cytotoxicity of ouabain, digoxin and proscillaridin A in the estrogen independent MDA-MB-231 breast cancer cells. Arch Pharmacal Res. 2007;30:1216–1224.10.1007/BF02980262
  • Boyd MR, Safrin S, Kern ER. Penciclovir: a review of its spectrum of activity, selectivity and cross-resistance pattern. Antiviral Chem Chemothe. 1993;4:3–11.10.1177/095632029300401S01
  • Khan M, Khan M, Adil SF, et al. Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract. Int J Nanomed. 2013;8:1507.
  • Chanda S. Silver nanoparticles (medicinal plants mediated): a new generation of antimicrobials to combat microbial pathogens – a review. In: Mendez-Vilas A, editor. Microbial pathogens and strategies for combating them: science technology and education. Badajoz, Spain: FORMATEX Research Center; 2014. p. 1314–1323.
  • Deepak P, Sowmiya R, Ramkumar R, et al. Structural characterization and evaluation of mosquito-larvicidal property of silver nanoparticles synthesized from the seaweed, Turbinaria ornata (Turner) J. Agardh 1848. Artif Cells, Blood Substitutes, Biotechn. 2016:1–9.
  • Gudikandula K, Charya Maringanti S. Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. J Exp Nanosci. 2016;11(9):714–721.10.1080/17458080.2016.1139196
  • Jayashree S, Thangaraju N. Biosynthesis and characterization of silver nanoparticles using marine macro algae Sargassum plagiophyllum C. Agardh. J Pharma Biomed Sci. 2015; 5: 705–712.
  • Suriati G, Mariatti M, Azizan A. Synthesis of silver nanoparticles by chemical reduction method: effect of reducing agent and surfactant concentration. Int J Automot Mech Eng. 2014;10:1920.10.15282/ijame
  • Muzamil M, Khalid N, Aziz MD, et al. Synthesis of silver nanoparticles by silver salt reduction and its characterization. InIOP Conf Ser: Mater Sci Eng. 2014;60(1):012034.10.1088/1757-899X/60/1/012034
  • Balakumaran MD, Ramachandran R, Kalaichelvan PT. Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities. Microbiol Res. 2015;178:9–17.10.1016/j.micres.2015.05.009
  • Kummara S, Patil MB, Uriah T. Synthesis, characterization, biocompatible and anticancer activity of green and chemically synthesized silver nanoparticles–a comparative study. Biomed Pharmacother. 2016;84:10–21.10.1016/j.biopha.2016.09.003
  • Kaviya S, Santhanalakshmi J, Viswanathan B, et al. Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity. Spectrochim Acta Part A Mol Biomol Spectrosc. 2011;79:594–598.10.1016/j.saa.2011.03.040
  • Guzmán MG, Dille J, Godet S. Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int J Chem Biomol Eng. 2009;2(3):104–111.
  • Mostafa AA, Sayed SR, Solkamy EN, et al. Evaluation of biological activities of chemically synthesized silver nanoparticles. J Nanomater. 2015;16(1):443.
  • Yuvarajan R, Natarajan D, Ragavendran C, et al. Photoscopic characterization of green synthesized silver nanoparticles from Trichosanthes tricuspidata and its antibacterial potential. J Photochem Photobiol B 2015;149:300–307.10.1016/j.jphotobiol.2015.04.032
  • Logeswari P, Dineshkumar V, Usha PTA, et al. Proximate analysis of Sida rhombifolia L. root and its effect on cadmium chloride induced alterations in body weight of Wistar rats. Int J Pharma Bio Sci. 2012; 2: 303–309.
  • Raja S, Ramesh V, Thivaharan V. Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arabian Journal of Chemistry. 2017;10:253–261.10.1016/j.arabjc.2015.06.023
  • Jena J, Pradhan N, Ranjan Nayak R, et al. Microalga Scenedesmus sp: a potential low-cost green machine for silver nanoparticle synthesis. J Microbiol Biotechnol. 2014;24:522–533.10.4014/jmb.1306.06014
  • Cox S, Abu-Ghannam N, Gupta S. An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. Int Food Res J. 2010;17:205–220.
  • Nagajyothi PC, Muthuraman P, Sreekanth TVM, et al. Green synthesis: In-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arabian J Chem. 2017;10:215–225.10.1016/j.arabjc.2016.01.011
  • Prabhu D, Arulvasu C, Babu G, et al. Biologically synthesized green silver nanoparticles from leaf extract of Vitex negundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15. Process Biochem. 2013;48:317–324.10.1016/j.procbio.2012.12.013
  • Nageswara Rao G, Mahesh Kumar P, Dhandapani VS, et al. Constituents of Cassia auriculata. Fitoterapia. 2000;71:83.
  • Ye X, Krohn RL, Liu W, et al. The cytotoxic effects of a novel 1H636 grape seed proanthocyanidin extract on cultured human cancer cells. Mol Cell Biochem. 1999;196:99–108.10.1023/A:1006926414683
  • Bhattacharyya SS, Mandal SK, Biswas R, et al. In vitro studies demonstrate anticancer activity of an alkaloid of the plant Gelsemium sempervirens. Exp Biol Med. 2008;233:1591–1601.10.3181/0805-RM-181
  • Sukirtha R, Krishnan M, Ramachandran R, et al. Areca catechu Linn.-derived silver nanoparticles: a novel antitumor agent against Daltons ascites lymphoma. Int J Green Nanotechnol. 2011;3:2–12.
  • Devi JS, Bhimba BV. Silver Nanoparticles: antibacterial and in vitro cytotoxic activity. Int J Ecol Environ Sci. 2013;2:2.
  • Higuchi Y. Glutathione depletion-induced chromosomal DNA fragmentation associated with apoptosis and necrosis. J Cell Mol Med. 2004;8:455–464.10.1111/jcmm.2004.8.issue-4
  • Carson DA, Riheiro JM. Apoptosis and disease. Lancet. 1993;341:1251–1254.10.1016/0140-6736(93)91154-E
  • Selvi BCG, Madhavan J, Santhanam A. Cytotoxic effect of silver nanoparticles synthesized from Padina tetrastromatica on breast cancer cell line. Adv Nat Sci. 2016;7:035015.
  • Gurunathan S, Raman J, Abd Malek SN, et al. Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int J Nanomed. 2013;8:4399–4413.
  • Hu RL, Li SR, Kong FJ, et al. Inhibition effect of silver nanoparticles on herpes simplex virus 2. Genet Mol Res. 2014;13:7022–7028.10.4238/2014.March.19.2
  • Bernhardt ES, Colman BP, Hochella MF, et al. An ecological perspective on nanomaterial impacts in the environment. J Environ Qual. 2010;39:1954–1965.10.2134/jeq2009.0479
  • Taghavi SM, Momenpour M, Azarian M, et al. Effects of nanoparticles on the environment and outdoor workplaces. Electron Physician J. 2013;5:706–712.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.