504
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Streptococcus iniae in aquaculture: a review of pathogenesis, virulence, and antibiotic resistance

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 25-38 | Received 24 Sep 2023, Accepted 18 Apr 2024, Published online: 13 May 2024

References

  • FAO. FAO leads global efforts to strengthen aquaculture for food and sustainable development. (s. f.). Newsroom. 2023. [cited 2024 Feb 5, de]. Available from: https://www.fao.org/newsroom/detail/fao-leads-global-efforts-to-strengthen-aquaculture-for-food-and-sustainable-development/en
  • FAO. Fao fisheries and aquaculture division. 2022. ISBN 978-9o2-5-135757-6.
  • Cain K. The many challenges of disease management in aquaculture. J World Aquacult Soc. 2022;53(6):1080–1083. doi: 10.1111/jwas.12936
  • Rattanachaikunsopon P, Phumkhachorn P. Potential of cinnamon (cinnamomum verum) oil to control streptococcus iniae infection in tilapia (Oreochromis niloticus). Fish Sci. 2010;76(2):287–293. doi: 10.1007/s12562-010-0218-6
  • Huang HY, Chen YC, Wang PC, et al. Efficacy of a formalin-inactivated vaccine against streptococcus iniae infection in the farmed grouper Epinephelus coioides by intraperitoneal immunization. Vaccine. 2014;32(51):7014–7020. doi: 10.1016/j.vaccine.2014.08.039
  • Dönmez AE, Cengizler I. Pathomorphology of experimental streptococcus iniae infection in tilapia (Oreochromis niloticus). Indian J Anim Res. 2020;54(2):234–238.
  • Kirmaier A, Blackshear L, Lee MSL, et al. Cellulitis and bacteremia caused by the fish pathogen, streptococcus iniae, in an immunocompromised patient: case report and mini-review of zoonotic disease, lab identification, and antimicrobial susceptibility. Diagn Microbiol Infect Dis. 2024;108(4):116189. doi: 10.1016/j.diagmicrobio.2024.116189
  • Baiano JCF, Barnes AC. Towards control of streptococcus iniae. Emerg Infect Dis. 2009;15(12):1891–1896. doi: 10.3201/eid1512.090232
  • Pier GB, Madin SH. Streptococcus iniae sp. Nov. a beta-hemolytic streptococcus isolated from an amazon freshwater dolphin, Inia geoffrensis. Int J Bacteriol. 1976;26(4):545–553. doi: 10.1099/00207713-26-4-545
  • Diaz JH. Skin and soft tissue infections following marine injuries and exposures in travelers. J Travel Med. 2014;21(3):207–213. doi: 10.1111/jtm.12115
  • Hussain A, Nazir F, Faizan M, et al. Significance of gene knockout for the detection of MurI gene in S. Iniae for evaluation of biochemical properties associated with pathogenicity at molecular level. Saudi J Life Sci. 2020;7:133–137.
  • CDC. Invasive infection with streptococcus iniae—Ontario, 1995-1996. (S.F.). 1996 [cited 2024 Feb 6, de] Available from: https://www.cdc.gov/mmwr/preview/mmwrhtml/00043200.htm
  • Awate S, Mubarka S, Huber RG. Whole genomic characterization of streptococcus iniae isolates from barramundi (lates calcarifer) and preliminary evidence of cross-protective immunization. Vaccines. 2023;11(9):1443. doi: 10.3390/vaccines11091443
  • Helmi AM, Mukti AT, Soegianto A, et al. A review of bacterial zoonoses and antimicrobial resistant (AMR) on grouper fish (Epinepholus sp.). Sys Rev Pharm. 2020;11(9):79–88.
  • Dodson SV, Maurer JJ, Shotts EB. Biochemical and molecular typing of streptococcus iniae isolated from fish and human cases. J Fish Disease. 1999;22(5):331–336. doi: 10.1046/j.1365-2761.1999.00170.x
  • Daneshamouz S, Haghi F, Zeighami H. Detection and identification of bacterial pathogens in rainbow trout (Oncorhynchus mykiss) samples from fish farms in iran. Thalassas: Int J Mar Sci. 2020;36(1):133–141. doi: 10.1007/s41208-019-00169-9
  • Legario FS, Choresca CH, Turnbull JF, et al. Isolation and molecular characterization of streptococcal species recovered from clinical infections in farmed Nile tilapia (Oreochromis niloticus) in the Philippines. J Fish Dis. 2020;43(11):1431–1442. doi: 10.1111/jfd.13247
  • Piamsomboon P, Thanasaksiri K, Murakami A, et al. Streptococcosis in freshwater farmed seabass lates calcarifer and its virulence in Nile tilapia Oreochromis niloticus. Aquaculture. 2020;523:735189. doi: 10.1016/j.aquaculture.2020.735189
  • Pierezan F, Shahin K, Heckman TI, et al. Outbreaks of severe myositis in cultured white sturgeon (Acipenser transmontanus l.) associated with streptococcus iniae. J Fish Dis. 2020;43(4):485–490. doi: 10.1111/jfd.13145
  • Ortega C, García I, Irgang R, et al. First identification and characterization of streptococcus iniae obtained from tilapia (Oreochromis aureus) farmed in Mexico. J Fish Dis. 2018;41(5):773–782. doi: 10.1111/jfd.12775
  • Rudenko O, Engelstädter J, Barnes AC. Evolutionary epidemiology of streptococcus iniae: linking mutation rate dynamics with adaptation to novel immunological landscapes. Infect Genet Evol. 2020;85:104435. doi: 10.1016/j.meegid.2020.104435
  • Heckman T, Griffin M, Camus A, et al. Multilocus sequence analysis of diverse streptococcus iniae isolates indicates an underlying genetic basis for phenotypic heterogeneity. Dis Aquat Org. 2020;141:53–69. doi: 10.3354/dao03521
  • Feng Y, Bai M, Geng Y, et al. The potential risk of antibiotic resistance of streptococcus iniae in sturgeon cultivation in Sichuan, China. Enviro Sci Pollut Res. 2021;28(48):69171–69180. doi: 10.1007/s11356-021-15501-1
  • Alcántara-Jauregui FM, Valladares-Carranza B, Ortega C. Enfermedades bacterianas y sus agentes etiológicos identificados en peces de méxico - Una Revisión: enfermedades bacterianas en peces de méxico. Rev MVZ Córdoba. 2022;27(2):e2387–e2387. doi: 10.21897/rmvz.2387
  • Pretto Giordano LG, Scarpassa JA. Streptococcus iniae: an unusual important pathogen fish in Brazil. J Aquac Res Dev. 2015;6(09). doi: 10.4172/2155-9546.1000363
  • Souter R, Chaber AL, Lee K, et al. Streptococcus iniae infection in a juvenile free-ranging short-beaked common dolphin (Delphinus delphis). Animals. 2021;11(11):3123. doi: 10.3390/ani11113123
  • Genin A, Levy L, Sharon G, et al. Rapid onsets of warming events trigger mass mortality of coral reef fish. Proc Natl Acad Sci, USA. 2020;117(41):25378–25385. doi: 10.1073/pnas.2009748117
  • Panek FM. Epizootics and disease of coral reef fish in the tropical western Atlantic and Gulf of Mexico. Rev Fish Sci. 2005;13(1):1–21. doi: 10.1080/10641260590885852
  • Gnanagobal H, Santander J. Host–pathogen interactions of marine gram-positive bacteria. Biology. 2022;11(9):1316. doi: 10.3390/biology11091316
  • Bowker JD, Ostland VE, Carty D, et al. Effectiveness of aquaflor (50% florfenicol) to control mortality associated with streptococcus iniae in freshwater‐reared subadult sunshine bass. J Aqua Anim Hlth. 2010;22(4):254–265. doi: 10.1577/H09-010.1
  • Tavares GC, De Queiroz GA, Assis GBN, et al. Disease outbreaks in farmed Amazon catfish (leiarius marmoratus x pseudoplatystoma corruscans) caused by streptococcus agalactiae, S. iniae, and S. dysgalactiae. Aquaculture. 2018;495:384–392. doi: 10.1016/j.aquaculture.2018.06.027
  • Watts J, Schreier H, Lanska L, et al. The rising tide of antimicrobial resistance in aquaculture: sources, sinks and solutions. Mar Drugs. 2017;15(6):158. doi: 10.3390/md15060158
  • Anumudu CK, Omoregbe O, Hart A, et al. Applications of bacteriocins of lactic acid bacteria in biotechnology and food preservation: a bibliometric review. Open Microbiol J. 2022;16(1):e187428582206300. doi: 10.2174/18742858-v16-e2206300
  • Van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84(2):523–538. doi: 10.1007/s11192-009-0146-3
  • Dadar M, Dhama K, Vakharia VN, et al. Advances in aquaculture vaccines against fish pathogens: global status and current trends. Rev Fish Sci Aquacult. 2017;25(3):184–217. doi: 10.1080/23308249.2016.1261277
  • Barnes AC, Rudenko O, Landos M, et al. Autogenous vaccination in aquaculture: a locally enabled solution towards reduction of the global antimicrobial resistance problem. Rev Aquacult. 2022;14(2):907–918. doi: 10.1111/raq.12633
  • Huang H-Y, Chen Y-C, Wang P-C, et al. Efficacy of a formalin-inactivated vaccine against streptococcus iniae infection in the farmed grouper Epinephelus coioides by intraperitoneal immunization. Vaccine. 2014;32(51):7014–7020. doi: 10.1016/j.vaccine.2014.08.039
  • Whyte SK. The innate immune response of finfish – a review of current knowledge. Fish Shellfish Immunol. 2007;23(6):1127–1151. doi: 10.1016/j.fsi.2007.06.005
  • Sakai M, Hikima J, Kono T. Fish cytokines: Current research and applications. Fish Sci. 2021;87(1):1–9. doi: 10.1007/s12562-020-01476-4
  • Mahlapuu M, Håkansson J, Ringstad L, et al. Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol. 2016;6:6. doi: 10.3389/fcimb.2016.00194
  • Zharkova MS, Orlov DS, Golubeva O, et al. Application of antimicrobial peptides of the innate immune system in combination with conventional antibiotics—A novel way to combat antibiotic resistance? Front Cell Infect Microbiol. 2019;9:128. doi: 10.3389/fcimb.2019.00128
  • Lei J, Sun L, Huang S, et al. The antimicrobial peptides and their potential clinical applications. Am J Transl Res. 2019;11(7):3919–3931.
  • Dehsorkhi A, Castelletto V, Hamley IW. Self‐assembling amphiphilic peptides. J Pept Sci. 2014;20(7):453–467. doi: 10.1002/psc.2633
  • Ting CH, Chen YC, Chen JY. Nile tilapia fry fed on antimicrobial peptide epinecidin-1-expressing artemia cyst exhibit enhanced immunity against acute bacterial infection. Fish Shellfish Immunol. 2018;81:37–48. doi: 10.1016/j.fsi.2018.07.008
  • Zahran E, Risha E, Elbahnaswy S, et al. Tilapia piscidin 4 (Tp4) enhances immune response, antioxidant activity, intestinal health and protection against streptococcus iniae infection in Nile tilapia. Aquaculture. 2019;513:734451. doi: 10.1016/j.aquaculture.2019.734451
  • Varga JFA, Brunner SR, Cheng G, et al. Identification and characterization of a novel peptide from rainbow trout (Oncorhynchus mykiss) with antimicrobial activity against streptococcus iniae. Dev Comp Immunol. 2022;137:104518. doi: 10.1016/j.dci.2022.104518
  • Van Baarlen P, Van Belkum A, Summerbell RC, et al. Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps? FEMS Microbiol Rev. 2007;31(3):239–277. doi: 10.1111/j.1574-6976.2007.00065.x
  • Casadevall A, Pirofski L, Fischetti VA. Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Fischetti VA, ed. Infect Immun. 1999;67(8):3703–3713. doi: 10.1128/IAI.67.8.3703-3713.1999
  • Esperanza-Cortés M, Consuegra-Bonilla J, Dario-Sinisterra R. Biofilm formation, control and novel strategies for eradication. Sci Against Microbial Pathog Commun Curr Res Technol Adv Adv. 2011;2:896–905.
  • Locke JB, Aziz RK, Vicknair MR, Nizet V, Buchanan JT, Ahmed N. Streptococcus iniae m-like protein contributes to virulence in fish and is a target for live attenuated vaccine development. Ahmed N, ed. PLoS One. 2008;3(7):e2824. doi: 10.1371/journal.pone.0002824
  • Eyngor M, Chilmonczyk S, Zlotkin A, et al. Transcytosis of Streptococcus iniae through skin epithelial barriers: an in vitro study. FEMS Microbiol Lett. 2007;277(2):238–248. doi: 10.1111/j.1574-6968.2007.00973.x
  • Zlotkin A, Chilmonczyk S, Eyngor M, et al. Trojan horse effect: phagocyte-mediated streptococcus iniae infection of fish. Infect Immun. 2003;71(5):2318–2325. doi: 10.1128/IAI.71.5.2318-2325.2003
  • Arasu A, Kumaresan V, Sathyamoorthi A, et al. Coagulation profile, gene expression and bioinformatics characterization of coagulation factor X of striped Murrel Channa striatus. Fish Shellfish Immunol. 2016;55:149–158. doi: 10.1016/j.fsi.2016.05.030
  • Xie H. Biogenesis and function of porphyromonas gingivalis outer membrane vesicles. Future Microbiol. 2015;10(9):1517–1527. doi: 10.2217/fmb.15.63
  • Cegelski L, Smith CL, Hultgren SJ. Microbial adhesion. Encyclopedia of Microbiology. Elsevier; 2019. pp. 93–102. doi: 10.1016/B978-0-12-801238-3.02317-5
  • Sarkar P, Issac PK, Raju SV, et al. Pathogenic bacterial toxins and virulence influences in cultivable fish. Aquacult Res. 2021;52(6):2361–2376. doi: 10.1111/are.15089
  • Bolotin S, Fuller JD, Bast DJ, et al. The two-component system sivS/R regulates virulence in streptococcus iniae: a TCS regulates virulence in streptococcus iniae. FEMS Immunol Med Microbiol. 2007;51(3):547–554. doi: 10.1111/j.1574-695X.2007.00334.x
  • Heckman TI, Soto E. Streptococcus iniae biofilm formation enhances environmental persistence and resistance to antimicrobials and disinfectants. Aquaculture. 2021;540:736739. doi: 10.1016/j.aquaculture.2021.736739
  • Muhammad M, Zhang T, Gong S, et al. Streptococcus iniae: a growing threat and causative agent of disease outbreak in farmed Chinese sturgeon (Acipenser sinensis). Pak J Zool. 2020;52(5). doi: 10.17582/journal.pjz/20190209200236
  • Yoon S, Kim YH, Jeun M, et al. Studies on a toxin/antitoxin system in streptococcus iniae. J Life Sci. 2019;29(1):97–104.
  • Bhavsar AP, Guttman JA, Finlay BB. Manipulation of host-cell pathways by bacterial pathogens. Nature. 2007;449(7164):827–834. doi: 10.1038/nature06247
  • Agnew W, Barnes A. Streptococcus iniae: an aquatic pathogen of global veterinary significance and a challenging candidate for reliable vaccination. Vet Microbiol. 2007;122(1–2):1–15. doi: 10.1016/j.vetmic.2007.03.002
  • Bromage E, Thomas A, Owens L. Streptococcus iniae, a bacterial infection in barramundi lates calcarifer. Dis Aquat Org. 1999;36:177–181. doi: 10.3354/dao036177
  • Stanimirovic D, Kemmerich K, Haqqani AS, et al. Engineering and pharmacology of blood–brain barrier-permeable bispecific antibodies. Adv Pharmacol. Vol. 71. Elsevier; 2014. pp. 301–335. doi:10.1016/bs.apha.2014.06.005
  • Bromage E, Owens L. Infection of barramundi lates calcarifer with streptococcus iniae: effects of different routes of exposure. Dis Aquat Org. 2002;52:199–205. doi: 10.3354/dao052199
  • Weinstein MR, Litt M, Kertesz DA, et al. Invasive infections due to a fish pathogen, streptococcus iniae. N Engl J Med. 1997;337(9):589–594. doi: 10.1056/NEJM199708283370902
  • Salvador R, Muller EE, Freitas JCD, et al. Isolation and characterization of streptococcus spp. group B in Nile tilapias (Oreochromis niloticus) reared in hapas nets and earth nurseries in the northern region of Parana State, Brazil. Cienc Rural. 2005;35(6):1374–1378. doi: 10.1590/S0103-84782005000600023
  • Liu C, Hu X, Cao Z, et al. Construction and characterization of a DNA vaccine encoding the SagH against streptococcus iniae. Fish Shellfish Immunol. 2019;89:71–75. doi: 10.1016/j.fsi.2019.03.045
  • LaRock CN, Nizet V. Cationic antimicrobial peptide resistance mechanisms of streptococcal pathogens. Biochim Biophys Acta - Biomembr. 2015;1848(11):3047–3054. doi: 10.1016/j.bbamem.2015.02.010
  • Jiang J, Miyata M, Chan C, Ngoh SY, Liew WC, Saju JM, Sing Ng K, Wong FS, Lee YS, Chang SF, Orbán L. Differential transcriptomic response in the spleen and head kidney following vaccination and infection of asian seabass with streptococcus iniae. In: Thune R, editor. PLoS one. Vol. 9. 2014. p. p. e99128(7.
  • Abdelsalam M, Elgendy MY, Elfadadny MR, et al. A review of molecular diagnoses of bacterial fish diseases. Aquacult Int. 2023;31(1):417–434. doi: 10.1007/s10499-022-00983-8
  • Colussi S, Pastorino P, Mugetti D, et al. Isolation and genetic characterization of Streptococcus iniae virulence factors in Adriatic sturgeon (Acipenser naccarii). Microorganisms. 2022;10(5):883. doi: 10.3390/microorganisms10050883
  • Liu Y, Weng T, Pan X, et al. Construction of an alanine dehydrogenase gene deletion strain for vaccine development against nocardia seriolae in hybrid snakehead (Channa maculata ♀ × Channa argus ♂). Fish Shellfish Immunol. 2023;138:108827. doi: 10.1016/j.fsi.2023.108827
  • Soh KY, Loh JMS, Hall C, et al. Functional analysis of two novel streptococcus iniae virulence factors using a zebrafish infection model. Microorganisms. 2020;8(9):1361. doi: 10.3390/microorganisms8091361
  • Baiano JC, Tumbol RA, Umapathy A, et al. Identification and molecular characterisation of a fibrinogen binding protein from streptococcus iniae. BMC Microbiol. 2008;8(1):67. doi: 10.1186/1471-2180-8-67
  • Zinkernagel AS, Timmer AM, Pence MA, et al. The il-8 protease spycep/scpc of group a streptococcus promotes resistance to neutrophil killing. Cell Host Microbe. 2008;4(2):170–178. doi: 10.1016/j.chom.2008.07.002
  • Fuller JD, Camus AC, Duncan CL, et al. Identification of a streptolysin s-associated gene cluster and its role in the pathogenesis of streptococcus iniae disease. Infect Immun. 2002;70(10):5730–5739. doi: 10.1128/IAI.70.10.5730-5739.2002
  • Nizet V, Beall B, Bast DJ, Datta V, Kilburn L, Low DE, De Azavedo JC, Tuomanen EI. Genetic locus for streptolysin s production by group a streptococcus. Tuomanen EI, ed. Infect Immun. 2000;68(7):4245–4254. doi: 10.1128/IAI.68.7.4245-4254.2000
  • Shutou K, Kanai K, Yoshikoshi K. Virulence attenuation of capsular polysaccharide-deleted mutants of streptococcus iniae in Japanese flounder Paralichthys olivaceus. Fish Pathol. 2007;42(1):41–48. doi: 10.3147/jsfp.42.41
  • Milani CJE, Aziz RK, Locke JB, et al. The novel polysaccharide deacetylase homologue Pdi contributes to virulence of the aquatic pathogen streptococcus iniae. Microbiology. 2010;156(2):543–554. doi: 10.1099/mic.0.028365-0
  • Hansen GR, Woodall J, Brown C, Jaax N, McNamara T, Ruiz A. Emerging zoonotic diseases. Panel summary from the International Conference on Emerging Infectious Diseases Conference, Atlanta, Georgia, 2000. Emerg Infect Dis. 2001;7(7):537. doi: 10.3201/eid0707.017716
  • Al-Harbi AH. Molecular characterization of streptococcus iniae isolated from hybrid tilapia (Oreochromis niloticus×Oreochromis aureus). Aquaculture. 2011;312(1–4):15–18. doi: 10.1016/j.aquaculture.2010.12.014
  • Zlotkin A, Hershko H, Eldar A. Possible transmission of streptococcus iniae from wild fish to cultured marine fish. Appl Environ Microbiol. 1998;64(10):4065–4067. doi: 10.1128/AEM.64.10.4065-4067.1998
  • Lau SKP, Woo PCY, Tse H, et al. Invasive streptococcus iniae infections outside North America. J Clin Microbiol. 2003;41(3):1004–1009. doi: 10.1128/JCM.41.3.1004-1009.2003
  • Sun JR, Yan JC, Yeh CY, et al. Invasive infection with streptococcus iniae in Taiwan. J Med Microbiol. 2007;56(9):1246–1249. doi: 10.1099/jmm.0.47180-0
  • Facklam R, Elliott J, Shewmaker L, et al. Identification and characterization of sporadic isolates of streptococcus iniae isolated from humans. J Clin Microbiol. 2005;43(2):933–937. doi: 10.1128/JCM.43.2.933-937.2005
  • Koh TH, Kurup A, Chen J. Streptococcus iniae discitis in Singapore. Emerg Infect Dis. 2004;10(9):1694–1696. doi: 10.3201/eid1009.040029
  • Dodson SV, Maurer JJ, Shotts EB. Biochemical and molecular typing of streptococcus iniae isolated from fish and human cases. J Fish Dis. 1999;22(5):331–336. doi: 10.1046/j.1365-2761.1999.00170.x
  • Zhou SM, Fan Y, Zhu XQ, et al. Rapid identification of streptococcus iniae by specific PCR assay utilizing genetic markers in ITS rDNA. J Fish Dis. 2011;34(4):265–271. doi: 10.1111/j.1365-2761.2010.01233.x
  • Farzadnia A, Naeemipour M. Molecular techniques for the detection of bacterial zoonotic pathogens in fish and humans. Aquacult Int. 2020;28(1):309–320. doi: 10.1007/s10499-019-00462-7
  • Torres‐Corral Y, Santos Y. Development of a real‐time PCR assay for detection and quantification of streptococcus iniae using the lactate permease gene. J Fish Dis. 2021;44(1):53–61. doi: 10.1111/jfd.13267
  • Charo F, Mbuthia P, Bebora L, et al. Influence of aquaculture management practices and water quality on bacterial occurrence in fish culture units in Kenya. Int J Fish Aquat Stud. 2023;11(2):01–07. doi: 10.22271/fish.2023.v11.i2a.2782
  • Thompson KD, Rodkhum C, Bunnoy A, et al. Addressing nanovaccine strategies for tilapia. Vaccines. 2023;11(8):1356. doi: 10.3390/vaccines11081356
  • Limbu SM. The current status of antibiotic-resistant bacteria and resistance genes in african aquaculture. In: Abia ALK, Essack SY, editors. Antimicrobial Research and One Health in Africa. Springer International Publishing. 2023. pp. 81–106 doi: 10.1007/978-3-031-23796-6_6
  • Ahmed J, Vasagam KPK, Ramalingam K. Nanoencapsulated aquafeeds and current uses in fisheries/shrimps: a review. Appl Biochem Biotechnol. [cited 2023 Mar 8];195(11):7110–7131. doi: 10.1007/s12010-023-04418-9
  • FAO. The State of World Fisheries and Aquaculture. 2020. ISBN 92-5-132692-3.
  • Tuan LC, Khanh NV, HTNB T, Phuong PT, Hieu DV, Thanh LTH, Loc NH. The occurrence of antibiotic resistance vibrio isolates from brackish water shrimp ponds in the coastal area in Thua Thien Hue, Vietnam. J App Biol Biotech. 2022. doi: 10.7324/JABB.2023.110211
  • Prabina D, Swaminathan TR, Mohandas SP, et al. Investigation of antibiotic-resistant vibrios associated with shrimp (Penaeus vannamei) farms. Arch Microbiol. 2023;205(1):41. doi: 10.1007/s00203-022-03376-w
  • He S, Wang Q, Li S, et al. Antibiotic growth promoter olaquindox increases pathogen susceptibility in fish by inducing gut microbiota dysbiosis. Sci China Life Sci. 2017;60(11):1260–1270. doi: 10.1007/s11427-016-9072-6
  • Qian M, Wang J, Ji X, et al. Sub-chronic exposure to antibiotics doxycycline, oxytetracycline or florfenicol impacts gut barrier and induces gut microbiota dysbiosis in adult zebrafish (Daino rerio). Ecotoxicol Environ Saf. 2021;221:112464. doi: 10.1016/j.ecoenv.2021.112464
  • Araújo C, Muñoz-Atienza E, Nahuelquín Y, et al. Inhibition of fish pathogens by the microbiota from rainbow trout (Oncorhynchus mykiss, Walbaum) and rearing environment. Anaerobe. 2015;32:7–14. doi: 10.1016/j.anaerobe.2014.11.001
  • Liao X, Deng R, Warriner K, et al. Antibiotic resistance mechanism and diagnosis of common foodborne pathogens based on genotypic and phenotypic biomarkers. Comp Rev Food Sci Food Safe. 2023;22(4):3212–3253. doi: 10.1111/1541-4337.13181
  • Kusunur AB, Mogilipuri SS, Moturu D, et al. Tetracycline resistance potential of heterotrophic bacteria isolated from freshwater fin-fish aquaculture system. J Appl Microbiol. 2023;134(4):lxad060. doi: 10.1093/jambio/lxad060
  • Chetri S. The culmination of multidrug-resistant efflux pumps vs. meager antibiotic arsenal era: urgent need for an improved new generation of EPIs. Front Microbiol. 2023;14:1149418. doi: 10.3389/fmicb.2023.1149418
  • Varela MF, Stephen J, Bharti D, et al. Inhibition of multidrug efflux pumps belonging to the major facilitator superfamily in bacterial pathogens. Biomedicines. 2023;11(5):1448. doi: 10.3390/biomedicines11051448
  • Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiol Spectr; 2016. pp. 481–511. doi: 10.1128/microbiolspec.VMBF-0016-2015
  • Manage PM. Heavy use of antibiotics in aquaculture: emerging human and animal health problems – a review. Sri Lanka J Aquat. 2018;23(1):13–27. doi: 10.4038/sljas.v23i1.7543
  • Lulijwa R, Rupia EJ, Alfaro AC. Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. Rev Aquacult. 2020;12(2):640–663. doi: 10.1111/raq.12344
  • Grudlewska-Buda K, Bauza-Kaszewska J, Wiktorczyk-Kapischke N, et al. Antibiotic resistance in selected emerging bacterial foodborne pathogens—an issue of concern? Antibiotics. 2023;12(5):880. doi: 10.3390/antibiotics12050880
  • Zuidmeer-Jongejan L, Huber H, Swoboda I, et al. Development of a hypoallergenic recombinant parvalbumin for first-in-man subcutaneous immunotherapy of fish allergy. Int Arch Allergy Immunol. 2015;166(1):41–51. doi: 10.1159/000371657
  • Cabello FC. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol. 2006;8(7):1137–1144. doi: 10.1111/j.1462-2920.2006.01054.x
  • Vazirzadeh A, Jalali S, Farhadi A. Antibacterial activity of Oliveria decumbens against streptococcus iniae in Nile tilapia (Oreochromis niloticus) and its effects on serum and mucosal immunity and antioxidant status. Fish Shellfish Immunol. 2019;94:407–416. doi: 10.1016/j.fsi.2019.09.025
  • Abdelkhalek NK, Risha E, MA E-A, et al. Antibacterial and antioxidant activity of clove oil against streptococcus iniae infection in Nile tilapia (Oreochromis niloticus) and its effect on hepatic hepcidin expression. Fish Shellfish Immunol. 2020;104:478–488. doi: 10.1016/j.fsi.2020.05.064
  • Stoffregen DA, Backman SC, Perham RE, et al. Initial disease report of streptococcus iniae infection in hybrid striped (sunshine) bass and successful therapeutic intervention with the fluoroquinolone antibacterial enrofloxacin. J World Aquacult Soc. 1996;27(4):420–434. doi: 10.1111/j.1749-7345.1996.tb00626.x
  • Naylor RL, Hardy RW, Buschmann AH, et al. A 20-year retrospective review of global aquaculture. Nature. 2021;591(7851):551–563. doi: 10.1038/s41586-021-03308-6
  • Shoemaker CA, Lozano CA, LaFrentz BR, et al. Additive genetic variation in resistance of Nile tilapia (Oreochromis niloticus) to streptococcus iniae and S. agalactiae capsular type ib: is genetic resistance correlated? Aquaculture. 2017;468:193–198. doi: 10.1016/j.aquaculture.2016.10.022
  • Sánchez Roncancio CO, Fonseca De Freitas RT. Supervivencia observada en tres familias de tilapia del nilo (Oreochromis niloticus) infectadas con streptococcus agalactiae. Rev Med Vet Zoot. 2022;69(3). doi: 10.15446/rfmvz.v69n3.103804
  • Sitjà-Bobadilla A, Oidtmann B. Integrated pathogen management strategies in fish farming. In: Galina J, editor. Fish diseases. Academic Press: Elsevier; 2017. pp. 119–144. doi: 10.1016/B978-0-12-804564-0.00005-3
  • Panigrahi A, Naveenkumar R, Das RR. Immunoprophylactic measures in aquaculture. In: Pandey PK, Parhi J, editors. Advances in fisheries biotechnology. Springer Nature Singapore; 2021. pp. 263–288. doi: 10.1007/978-981-16-3215-0_18
  • O’Neill J. Antimicrobials in agriculture and the environment: reducing unnecessary use and waste, the review on antimicrobial resistance, AMR-review.Org. 2015.
  • Chen C-P, Chuang S-C, Su K-L, et al. Application of proteomics in identifying crucial virulence factors shared by different streptococcus iniae isolates for developing an effective subunit vaccine against S. iniae in tilapia. Aquaculture. 2024;581:740477. doi: 10.1016/j.aquaculture.2023.740477
  • Adams A. Progress, challenges and opportunities in fish vaccine development. Fish Shellfish Immunol. 2019;90:210–214. doi: 10.1016/j.fsi.2019.04.066
  • Vinh NT, Dong HT, Lan NGT, et al. Immunological response of 35 and 42 days old Asian seabass (lates calcarifer, Bloch 1790) fry following immersion immunization with streptococcus iniae heat-killed vaccine. Fish Shellfish Immunol. 2023;138:108802. doi: 10.1016/j.fsi.2023.108802
  • Komar C, Ariav R, Thompson KD, et al. To vaccinate or not to vaccinate? Tilapia health: quo vadis? 1–3 December 2021. [cited 2023 Aug 28]. Available from: http://infofish.org/tilapia/media/attachments/2021/12/06/18_komar_to-vaccinate-or-not.pdf
  • Embregts CWE, Forlenza M. Oral vaccination of fish: lessons from humans and veterinary species. Dev Comp Immunol. 2016;64:118–137. doi: 10.1016/j.dci.2016.03.024
  • Monir MS, Yusoff MSM, Zamri-Saad M, et al. Effect of an oral bivalent vaccine on immune response and immune gene profiling in vaccinated red tilapia (Oreochromis spp.) during infections with streptococcus iniae and Aeromonas hydrophila. Biology. 2022;11(9):1268. doi: 10.3390/biology11091268
  • Halimi M, Alishahi M, Abbaspour MR, et al. Valuable method for production of oral vaccine by using alginate and chitosan against Lactococcus garvieae/Streptococcus iniae in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2019;90:431–439. doi: 10.1016/j.fsi.2019.05.020
  • Meachasompop P, Bunnoy A, Keaswejjareansuk W, et al. Development of immersion and oral bivalent nanovaccines for streptococcosis and columnaris disease prevention in fry and fingerling asian seabass (lates calcarifer) nursery farms. Vaccines. 2023;12(1):17. doi: 10.3390/vaccines12010017
  • Wang B, Thompson KD, Wangkahart E, et al. Strategies to enhance tilapia immunity to improve their health in aquaculture. Rev Aquacult. 2023;15(S1):41–56. doi: 10.1111/raq.12731
  • Mishra S, Seshagiri B, Rathod R, et al. Recent advances in fish disease diagnosis, therapeutics, and vaccine development. Front Aquacult Biotechnol Elsevier. 2023:115–145. doi: 10.1016/B978-0-323-91240-2.00011-7
  • Kate GU, Krishnani KK, Kumar N, et al. Abiotic and biotic stress alleviating effects of the medicinal and aromatic plant-derived product on striped catfish pangasianodon hypophthalmus. Fish Shellfish Immunol. 2023;135:108625. doi: 10.1016/j.fsi.2023.108625
  • Aly SM, ElBanna NI, Fathi M. Chlorella in aquaculture: challenges, opportunities, and disease prevention for sustainable development. Aquacult Int. [cited 2023 Aug 14];32(2):1559–1586. doi: 10.1007/s10499-023-01229-x
  • Heckman TI, Shahin K, Henderson EE, et al. Development and efficacy of Streptococcus iniae live-attenuated vaccines in Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol. 2022;121:152–162. doi: 10.1016/j.fsi.2021.12.043
  • Jose Priya TA, Kappalli S. Chemicals and their interaction in the aquaculture system. In: Mohanan PV, Kappalli S, editors. Biomedical applications and toxicity of nanomaterials. Springer Nature Singapore; 2023. pp. 277–297. doi: 10.1007/978-981-19-7834-0_11
  • Zhu J, Gan X, Ao Q, et al. Basal polarization of the immune responses to Streptococcus agalactiae susceptible and resistant tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2018;75:336–345. doi: 10.1016/j.fsi.2018.01.022
  • Wang J, Zou LL, Li AX. Construction of a streptococcus iniae sortase a mutant and evaluation of its potential as an attenuated modified live vaccine in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2014;40(2):392–398. doi: 10.1016/j.fsi.2014.07.028
  • Pérez-Sánchez T, Mora-Sánchez B, Balcázar JL. Biological approaches for disease control in aquaculture: advantages, limitations and challenges. Trends Microbiol. 2018;26(11):896–903. doi: 10.1016/j.tim.2018.05.002
  • Guimarães MC, Cerezo IM, Fernandez-Alarcon MF, et al. Oral administration of probiotics (Bacillus subtilis and lactobacillus plantarum) in Nile tilapia (Oreochromis niloticus) vaccinated and challenged with streptococcus agalactiae. Fishes. 2022;7(4):211. doi: 10.3390/fishes7040211
  • Balcázar JL, Vendrell D, De Blas I, et al. Effect of Lactococcus lactis CLFP 100 and Leuconostoc mesenteroides CLFP 196 on Aeromonas salmonicida infection in brown trout (salmo trutta). Microbial Physiol. 2009;17(3):153–157. doi: 10.1159/000226588
  • Hoseinifar SH, Yousefi S, Van Doan H, et al. Oxidative stress and antioxidant defense in fish: the implications of probiotic, prebiotic, and synbiotics. Rev Fish Sci Aquacult. 2021;29(2):198–217. doi: 10.1080/23308249.2020.1795616
  • Kuebutornye FKA, Abarike ED, Lu Y. A review on the application of Bacillus as probiotics in aquaculture. Fish Shellfish Immunol. 2019;87:820–828. doi: 10.1016/j.fsi.2019.02.010
  • Etyemez M, Balcazar JL. Isolation and characterization of bacteria with antibacterial properties from Nile tilapia (Oreochromis niloticus). Res Vet Sci. 2016;105:62–64. doi: 10.1016/j.rvsc.2016.01.019
  • Gutowska MA, Drazen JC, Robison BH. Digestive chitinolytic activity in marine fishes of Monterey Bay, California. Comp Biochem Physiol Part A: Mol Integr Physiol. 2004;139(3):351–358. doi: 10.1016/j.cbpb.2004.09.020
  • Wu ZX, Feng X, Xie LL, et al. Effect of probiotic Bacillus subtilis Ch9 for grass carp, Ctenopharyngodon idella (Valenciennes, 1844), on growth performance, digestive enzyme activities and intestinal microflora: probiotic Bacillus subtilis Ch9 effect on grass carp. J Appl Ichthyol. 2012;28(5):721–727. doi: 10.1111/j.1439-0426.2012.01968.x
  • Purwandari AR. Profiling of intestinal microbial diversity by PCR-DGGE genes coding for 16S rDNA and immunity status of the Orange Spotted Grouper (Epinephelus coioides) following probiotic Bacillus subtilis adminis [ Ph. D. thesis]. Universitas Brawijaya; 2012.
  • Nayak S, Limsuwan C, Chuchird N, et al. A study on the effect of bacillus spp. to control the pathogenic bacteria in aquaculture. J Fish Environ. 2012;36(2):1–13.
  • James G, Das BC, Jose S, et al. Bacillus as an aquaculture friendly microbe. Aquacult Int. 2021;29(1):323–353. doi: 10.1007/s10499-020-00630-0
  • Etyemez Büyükdeveci M, Cengizler İ, Balcázar JL, et al. Effects of two host-associated probiotics Bacillus mojavensis B191 and Bacillus subtilis MRS11 on growth performance, intestinal morphology, expression of immune-related genes and disease resistance of Nile tilapia (Oreochromis niloticus) against streptococcus iniae. Dev Comp Immunol. 2023;138:104553.
  • Al-Deriny SH, Dawood MAO, Zaid AAA, et al. The synergistic effects of spirulina platensis and Bacillus amyloliquefaciens on the growth performance, intestinal histomorphology, and immune response of Nile tilapia (Oreochromis niloticus). Aquacult Rep. 2020;17:100390. doi: 10.1016/j.aqrep.2020.100390
  • Verburg‐Van Kemenade BML, Stolte EH, Metz JR, et al. Chapter 7 neuroendocrine–immune interactions in teleost fish. In: Fish physiology. Vol. 28. Elsevier; 2009. pp. 313–364. doi: 10.1016/S1546-5098(09)28007-1
  • Chen SW, Liu CH, Hu SY. Dietary administration of probiotic Paenibacillus ehimensis NPUST1 with bacteriocin-like activity improves growth performance and immunity against Aeromonas hydrophila and streptococcus iniae in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2019;84:695–703. doi: 10.1016/j.fsi.2018.10.059
  • Abid S, Farid A, Abid R, et al. Identification, biochemical characterization, and safety attributes of locally isolated lactobacillus fermentum from Bubalus bubalis (Buffalo) milk as a probiotic. Microorganisms. 2022;10(5):954. doi: 10.3390/microorganisms10050954
  • Akmal U, Ghori I, Elasbali AM, et al. Probiotic and antioxidant potential of the lactobacillus spp. isolated from artisanal fermented pickles. Fermentation. 2022;8(7):328. doi: 10.3390/fermentation8070328