5,123
Views
16
CrossRef citations to date
0
Altmetric
Articles

Antidiabetic and antihyperlipidemic effects of a methanolic extract of Mimosa pudica (Fabaceae) in diabetic rats

ORCID Icon, , &
Pages 137-148 | Received 04 Mar 2019, Accepted 15 Oct 2019, Published online: 31 Oct 2019

References

  • Karalliedde J, Gnudi L. Diabetes mellitus, a complex and heterogeneous disease, and the role of insulin resistance as a determinant of diabetic kidney disease. Nephrol Dialysis Transplantation. 2016;31:206–213.
  • Warraich HJ, Wong ND, Rana JS. Role for combination therapy in diabetic dyslipidemia. Curr Cardiol Rep. 2015;17(5):32.
  • Schofield JD, Liu Y, Rao-Balakrishna P, et al. Diabetes Dyslipidemia. Diabetes Ther. 2016;7(2):203–219.
  • Warraich HJ, Rana JS. Diabetic dyslipidemia: epidemiology and prevention of cardiovascular disease and implications of newer therapies. Curr Cardiol Rep. 2018;20(12):125.
  • Dixit AK, Dey R, Suresh A, et al. The prevalence of dyslipidemia in patients with diabetes mellitus of Ayurveda Hospital. J Diabetes Metab Disord. 2014;13:58.
  • Goldberg IJ. Clinical review 124: diabetic dyslipidemia: causes and consequences. J Clin Endocrinol Metab. 2001;86(3):965–971.
  • Feingold KR, Grunfeld C. Diabetes and Dyslipidemia. 2018 Jan 24 In: De Groot LJ, Chrousos G, Dungan K, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000. PMID: 26247092. Available from: http://www.ncbi.nlm.nih.gov/books/NBK305900/
  • Farag M, Ahmed WJ, Foud I, et al. The Role of Medicinal Plants in the Treatment of Type-2 Diabetes. University of Khartoum [Thesis]. [cited 2018 May 22]. Available from: http://khartoumspace.uofk.edu/handle/123456789/23509
  • Rao UM, Sreenivasulu M, Chengaiah B, et al. Herbal medicines for diabetes mellitus: A review. Int J PharmTech Res. 2010;2(3):1883–1892.
  • Marles RJ, Farnsworth NR. Antidiabetic plants and their active constituents. Phytomedicine. 1995;2(2):137–189.
  • Singh P, Mishra A, Singh P, et al. Diabetes mellitus and use of medicinal plants for its treatment. Indian J Res Pharm Biotech. 2015;3(5):351–357.
  • Ahmad H, Sehgal S, Mishra A, et al. Mimosa pudica L. (Laajvanti): an overview. Pharmacogn Rev. 2012;6(12):115–124.
  • Azmi L, Singh MK, Akhtar AK. Pharmacological and biological overview on Mimosa pudica Linn. Int J Pharm Life Sci. 2011;2(11):1226–1234.
  • Jagetia GC, Lalhmangaihi C. Phytochemical profiling and antioxidant activity of lajwanti Mimosa pudica Linn. In Vitro. Int J Plant Stu. 2018;1(1):1–13.
  • Rajendiran D, Raghavan S, Kandaswamy S, et al. Hepatoprotective activity of ethanol extract of Mimosa pudica leaves in type 2 diabetic rats. Pharm Innov J. 2018;7(12):223–226.
  • James JP, Priya S, Jyothi D. Effect of PLGA polymer on antimicrobial activity and the release studies of nanoparticle hydrogel containing Mimosa pudica extract. Res J Pharm Tech. 2018;11(7):2876–2880.
  • Elemike EE, Onwudiwe DC, Ogeleka DF, et al. Phyto-assisted preparation of Ag and Ag–cuO nanoparticles using aqueous extracts of Mimosa pigra and their catalytic activities in the degradation of some common pollutants. J Inorg Organomet Polym Mater. 2019;29:1798–1806.
  • Muhammad G, Hussain MA, Jantan I, et al. Mimosa pudica L., a high-value medicinal plant as a source of bioactives for pharmaceuticals. Compr Rev Food Sci Food Saf. 2016;15(2):303–315.
  • Ahuchaogu AA, Chukwu OJ, Echeme JO. Secondary metabolites from Mimosa pudica: isolation, purification and NMR characterization. IOSR J Appl Chem. 2017;10(3):15–20.
  • Yadav RNS, Agarwala M. Phytochemical analysis of some medicinal plants. J Phytol. 2011;3(12):10–14.
  • Kumari D, Madhujith T, Chandrasekara A. Comparison of phenolic content and antioxidant activities of millet varieties grown in different locations in Sri Lanka. Food Sci Nutr. 2016;5(3):474–485.
  • Parasuraman S, Balamurugan S, Christapher PV, et al. Evaluation of antidiabetic and antihyperlipidemic effects of hydroalcoholic extract of leaves of Ocimum tenuiflorum (Lamiaceae) and prediction of biological activity of its phytoconstituents. Pharmacogn Res. 2015;7(2):156.
  • Deeds MC, Anderson JM, Armstrong AS, et al. Single dose streptozotocin-induced diabetes: considerations for study design in islet transplantation models. Lab Anim. 2011;45(3):131–140.
  • Murthy NK, Pushpalatha KC, Joshi CG. Antioxidant activity and phytochemical analysis of endophytic fungi isolated from Lobelia nicotianifolia. J Chem Pharm Res. 2011;3(5):218–225.
  • Dhananjayan I, Kathiroli S, Subramani S, et al. Ameliorating effect of betanin, a natural chromoalkaloid by modulating hepatic carbohydrate metabolic enzyme activities and glycogen content in streptozotocin–nicotinamide induced experimental rats. Biomed Pharmacother. 2017;88(1069–79):35.
  • Gajdosik A, Gajdosikova A, Stefek M, et al. Streptozotocin-induced experimental diabetes in male Wistar rats. Gen Physiol Biophys. 1999;18:54–62.
  • Hermans MP, Ahn SA, Rousseau MF. The atherogenic dyslipidemia ratio [log(TG)/HDL-C] is associated with residual vascular risk, beta-cell function loss and microangiopathy in type 2 diabetes females. Lipids Health Dis. 2012;11:132.
  • Shirazi OU, Khan Khattak MMA, Shukri NAM, et al. Determination of total phenolic, flavonoid content and free radical scavenging activities of common herbs and spices. J Pharmacogn Phytoche. 2014;104(33):104–108.
  • Eleazu CO, Eleazu KC, Chukwuma S, et al. Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. J Diabetes Metab Disord. 2013;12(1):60.
  • Furman BL. Streptozotocin‐induced diabetic models in mice and rats. Curr Protoc Pharmacol. 2015;70(1):5–47.
  • Wu KK, Huan Y. Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol. 2008. Chapter 5:Unit5.47. https://www.ncbi.nlm.nih.gov/pubmed/22294227
  • Gromada J, Dissing S, Kofod H, et al. Effects of the hypoglycaemic drugs repaglinide and glibenclamide on ATP-sensitive potassium-channels and cytosolic calcium levels in β TC3 cells and rat pancreatic beta cells. Diabetologia. 1995;38(9):1025–1032.
  • Petchi RR, Vijaya C, Parasuraman S. Antidiabetic activity of polyherbal formulation in streptozotocin–nicotinamide induced diabetic wistar rats. J Tradit Complement Med. 2014;4(2):108–117.
  • Fridlyand LE, Jacobson DA, Philipson LH. Ion channels and regulation of insulin secretion in human β-cells: a computational systems analysis. Islets. 2013;5(1):1–15.
  • Ahmadian M, Duncan RE, Jaworski K, et al. Triacylglycerol metabolism in adipose tissue. Future Lipidol. 2007;2(2):229–237.
  • Ueda K, Komine J, Matsuo M, et al. Cooperative binding of ATP and MgADP in the sulfonylurea receptor is modulated by glibenclamide. Proc Natl Acad Sci. 1999;96(4):1268–1272.
  • Ojiako OA, Chikezie PC, Ogbuji AC. Blood glucose level and lipid profile of alloxan-induced hyperglycemic rats treated with single and combinatorial herbal formulations. J Tradit Complement Med. 2016;6(2):184–192.
  • Ota A, Ulrih NP. An overview of herbal products and secondary metabolites used for management of type two diabetes. Front Pharmacol. 2017;8:436.
  • Thamizharasan S, Umamaheswari S, Hari R. ɑ - Amylase and ɑ - Glucosidase Activity of Mimosa Pudica. Linn Flowers. PARIPEX- Indian Journal Res. 2016;5:223–4.
  • Tasnuva ST, Qamar UA, Ghafoor K, Sahena F, Jahurul MH, Rukshana AH, et al. ɑ-glucosidase inhibitors isolated from Mimosa pudica L. Nat Prod Res. 2019;33:1495–9.
  • Manzano S, Williamson G. Polyphenols and phenolic acids from strawberry and apple decrease glucose uptake and transport by human intestinal Caco-2 cells. Mol Nutr Food Res. 2010;54(12):1773–80.