1,105
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of anti-bacterial activity of novel 2, 3-diaminoquinoxaline derivatives: design, synthesis, biological screening, and molecular modeling studies

ORCID Icon, , ORCID Icon, ORCID Icon, &
Pages 162-179 | Received 08 Oct 2021, Accepted 01 Mar 2022, Published online: 30 Mar 2022

References

  • Vithal PM, Ritu S, Khalid UK, et al. First and second line drug resistance among treatment naïve pulmonary tuberculosis patients in a district under Revised National Tuberculosis Control Programme (RNTCP) in New Delhi. J Epidemiol Glob Health. 2015;4:365–373.
  • Lynn P, Linus O, Dung TKK, et al. Multiple antibiotic resistance as a risk factor for mortality and prolonged hospital stay: a cohort study among neonatal intensive care patients with hospital-acquired infections caused by gram-negative bacteria in Vietnam. Plos one. 2019. DOI:10.1371/journal.pone.0215666
  • Ponnam SL, Juhi T, Bibhabati MM, et al. aureus in hospitalized patients. J Global Infect Dis. 2010;2:275.
  • Brooks LA, Moushy M. Synthesis of Alkylated Pyrrole Compounds. US2417046 A (11 March 1947).
  • Baney LJ Isolation of Pyrrole from Pyridine. US2425220 A, 1947 Aug 5.
  • Piddock LK, Webber MA, Baylay AJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13:42–51.
  • Mah TFC, O’toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001;9:34–39.
  • Stewart PS. Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol. 2002;292:107–113.
  • Kim YB, Kim YH, Park JY, et al. Synthesis and biological activity of new quinoxaline antibiotics of echinomycin analogues. Bioorg Med Chem Lett. 2004;14:541–544. [Cross Ref] [Pub Med].
  • Bailly C, Waring JM. DNA recognition by quinoxaline antibiotics: use of base-modified DNA molecules to investigate determinants of sequence-specific binding of triostin A and TANDEM. Biochem J. 1998;330:81–87.
  • Anthony M. Erdafitinib: first global approval. Drugs. 2019;79: 1017–1021. DOI:10.1007/s40265-019-01142-9
  • Badran MM, Abonzid KA, Hussein MHM. Synthesis of certain substituted quinoxalines as antimicrobial agents (part II). Arch Pharm Res. 2003;26:107–113.
  • El-Gendy A, El-Meligie S, El-Ansary AAK. Synthesis of some Quinoxaline derivatives containing Indoline-2,3-dione or Thiazolidinone residue as potential antimicrobial agents. Arch Pharm Res. 1995;18:44–47.
  • Parhi AK, Zhang Y, Saionz KW, et al. Antibacterial activity of quinoxalines, quinazolines, and 1,5-naphthyridines. Bioorg Med Chem Lett. 2013;23:4968–4974.
  • Ajani OO, Obafemi CA, Ikpo CO, et al. Microwave-assisted synthesis and antibacterial activity of some pyrazol-1-ylquinoxalin- 2(1H)-one derivatives. Chem Heterocycl Comp. 2009;45:1370–1378.
  • Caleb AA, Ballo DB, Rachid DH, et al. Synthesis and antibacterial activity of new spiro[thiadiazolinequinoxaline] derivatives. El Mokhtar Arkivoc ii. 2011;217–226.
  • Peraman R, Kuppusamy R, Killi SK, et al. New conjugates of Quinoxaline as potent Antitubercular and Antibacterial agents. Int J Med Chem. 2016;1–8. DOI:10.1155/2016/6471352
  • Ramalingam P, Ganapaty S, Rao CB. Bioorg. Med Chem Lett. 2010;20:406–408.
  • Moreno E, Ancizu S, Pérez-Silanes S, et al. Synthesis and antimycobacterial activity of new quinoxaline-2-carboxamide 1,4-di-N-oxide derivatives. Eur. J. Med. Chem. 2010;45(10):4418–4426.
  • Rangisetty JB, Prasad AL, Srinivas P, et al. Synthesis of new arylaminoquinoxalines and their antimalarial activity in mice. J Pharm Pharmacol. 2001;53(10):1409–1413.
  • Chandra Shekhar A, Rao PS, Narsaiah B, et al. Emergence of pyrido quinoxalines as new family of antimalarial agents. Eur J Med Chem. 2014;22:280–287.
  • Guillon J, Mouray E, Moreau S, et al. New ferrocenic pyrrolo[1,2-a]quinoxaline derivatives: synthesis, and in vitro antimalarial activity – part II. J Med Chem. 2011;46:2310–2326.
  • Wilhelmsson LM, Kingi N, Bergman J. Interactions of Antiviral Indolo[2,3-b]quinoxaline Derivatives with DNA. J Med Chem. 2008;51:7744–7750.
  • Harmenberg J, Johansson AA, Graslund A, et al. The mechanism of action of the anti-herpes virus compound 2,3-dimethyl-6(2-dimethylaminoethyl)-6H-indolo-(2,3-b). Quinoxaline Antiviral Res. 1991;15:193–204.
  • Clercq ED. Toward Improved Anti-HIV Chemotherapy: therapeutic Strategies for Intervention with HIV Infections. J Med Chem. 1995;38:2491–2517.
  • Wagle S, Adhikari AV, Suchetha NK. Synthesis of some new 2-(3-methyl-7- substituted-2-oxoquinoxalinyl) −5-(aryl)-1,3,4-oxadiazoles as potential non-steroidal anti-inflammatory and analgesic agents. Indian J Chem. 2008;47B:439–448.
  • Rogier AS, Herman DL, Coruzzi G, et al. Fragment based design of New H4 Receptor-Ligands with Anti-inflammatory properties in Vivo. J Med Chem. 2008;51:2457–2467.
  • Burguete A, Pontiki E, Hadjipavlou-Litina D, et al. Synthesis and Biological Evaluation of New Quinoxaline derivatives as antioxidant and anti-inflammatory agents. Chem Biol Drug Des. 2011;77(4):255–267.
  • Abu-Hashem AA, Gouda MA, Badria FA. Eur. J Med Chem. 2010;45:1976–1981.
  • Singh DP, Deivedi SK, Hashim SR, et al. Synthesis and Antimicrobial Activity of Some new Quinoxaline derivatives. Pharmaceuticals. 2010;3:2416–2425.
  • Zhang M, Dai ZC, Qian SS, et al. Design, Synthesis, Antifungal, and Antioxidant Activities of (E)-6-((2-Phenylhydrazono)methyl)quinoxaline Derivatives. J Agric Food Chem. 2014;62:9637–9643.
  • Ajani OO, Obafemi CA, Nwinyi OC, et al. Bioorg. Med Chem. 2010;18:214–221.
  • Carta A, Piras S, Loriga G, et al. Chemistry, Biological Properties and SAR Analysis of Quinoxalinones. Med Chem. 2006;6(22):1179–1200.
  • Abid M, Azam AB. Synthesis, characterization and antiamoebic activity of 1-(thiazolo[4,5-b]quinoxaline-2-yl)-3-phenyl-2-pyrazoline derivatives. Med Chem Lett. 2006;6(10):2812–2816.
  • Samir Undevia D, Innocenti F, Ramirez J, et al. A phase I and pharmacokinetic study of the quinoxaline antitumour Agent R(+)XK469 in patients with advanced solid tumours. Eur J Cancer. 2008;44:1684–1692.
  • Marcu L, Olver I. Tirapazamine: from Bench to Clinical Trials. Curr Clin Pharmacol. 2006;1:71–79.
  • Lee SH, Kim N, Kim SJ, et al. Res. Clin Oncol. 2013;139:1279–1294.
  • Waring MJ, Ben-Hadda T, Kotchevar AT, et al. 2,3-Bifunctionalized Quinoxalines: Synthesis, DNA Interactions and Evaluation of Anticancer, Anti-tuberculosis and Antifungal Activity. Molecules. 2002;7:641–656.
  • Desplat V, Moreau S, Belisle-Fabre S Synthesis and evaluation of the antiproliferative activity of novel isoindolo[2,1-a]quinoxaline and indolo[1,2-a]quinoxaline derivatives. , et al. Enzyme Inhibition Med Chem. 2011;26:657–667.
  • Chung HJ, Jung OJ, Chae MJ, et al. Bioorg. Med Chem Lett. 2005;15:3380–3384.
  • Ingle R, Marathe R, Magar D, et al. Sulphonamido-quinoxalines: search for anticancer agent. S J Eur J Med Chem. 2013;65:168–186.
  • Noolvi MN, Patel HM, Bhardwaj V, et al. Synthesis and in vitro antitumor activity of substituted quinazoline and quinoxaline derivatives: search for anticancer agent. J Med Chem. 2011;46:2327–2346.
  • Abou-Gharbia M, Freed ME, McCaully RJ, et al. Tetrahydropyrrolo[1,2-a Iquinoxalines and Tetrahydropyrrolo[1,2-a]pyrido[3,2-a Ipyrazines: vascular Smooth Muscle Relaxants and Antihypertensive Agents. J Med Chem. 1984;27:1743–1746.
  • Bigge CF, Malone TC, Boxer PA, et al. Synthesis of 1,4,7,8,9,10-Hexahydro-9-methy −1-6-nitropyrido[3,4-f]- quinoxaline-2,3-dione and Related Quinoxalinediones: characterization of a-Amino-3-hydroxy −5-methyl-4-isoxazolepropionic Acid (and N-Methyl-D-aspartate) Receptor and Anticonvulsant Activity. J Med Chem. 1995;38:3720–3740. DOI:10.1021/jm00019a003
  • Elhelby AA, Ayyad RR, Zayed MFA. Synthesis and biological evaluation of some novel quinoxaline derivatives as anticonvulsant agents. Drug Res. 2011;61:379–381.
  • Olayiwola G, Obafemi CA, Taiwo FO. Afr. J Biotechnol. 2007;6:777–786.
  • Levitzki A. Protein kinase inhibitors as a therapeutic modality. Acc Chem Res. 2003;36:462–469.
  • Zarnowski T, Kleinrok Z, Turski WA, et al. 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(F)quinoxaline enhances the protective activity of common antiepileptic drugs against maximal electroshock-induced seizures in mice. Neuropharmacology. 1993;32:895–900.
  • Rogawski MA. Diverse mechanisms of antiepileptic drugs in the development pipeline. Epilepsy Res. 2006;69:273–294.
  • Yan W, Qing J, Mei H, et al. Discovery of novel small molecule anti-HCV agents via the CypA inhibitory mechanism using O-Acylation-DirectedLead optimization. Molecules. 2015;20:10342–10359.
  • Rong F, Chow S, Yan S, et al. Structure–activity relationship (SAR) studies of quinoxalines as novel HCV NS5B RNA-dependent RNA polymerase inhibitors. Bioorg Med Chem Lett. 2007;17:1663–1666.
  • Ismai MMF, Ammar YA, Ibrahim MK, et al. Synthesis and pharmacological evaluation of novel quinoxalines as potential nonulcerogenic anti-inflammatory and analgesic agents. Arzneimittelforschung. 2005;55:738–743.
  • Campiani G, Morelli EG, Nacci S, et al. Pyrroloquinoxaline Derivatives as High-Affinity and Selective 5-HT3 Receptor Agonists:  Synthesis, Further Structure−Activity Relationships, and Biological Studies. T J Med Chem. 1999;42:4362–4379.
  • Young VV, Haute T, Bright DR Quinoxaline adducts useful as anthelmintics. US4348389A (07 Sep. 1982).
  • Meyes P. Basel, Switzerland. Insection compositions containing quinalphos and thiometon. US4510137A, (1985 Apr 09).
  • Mann RK, Franklin, Synergistic herbicidal composition containing fluroxypyr and cyhalofop, metamifop or profoxydim. US 2011/00981-81(Apr 2011).
  • Zhang M, Dai ZC, Qian SS, et al. Synthesis, Antifungal, and Antioxidant Activities of (E)-6-((2- Phenylhydrazono)methyl)quinoxaline derivatives. J Agric Food Chem. 2014;62:9637–9643.
  • Xu M, Hu X, Zhang Y, et al. Novel organic dyes featuring Spiro[dibenzo [3,4:6,7] cyclohepta[1,2-b]quinoxaline-10,9′-fluorene] (SDBQX) as a rigid moiety for dye-sensitized solar cells. ACS Appl Energy Mater. 2018;5:2200–2207.
  • Zhang LP, Jiang KJ, Li G, et al. Pyrazino[2,3-g] quinoxaline dyes for solar cell applications. J Mater Chem A. 2014;2:14852–14857. (b) Lu, X.; Feng, Q.; Lan, T.; Zhou, G.; Wang, Z.S. Molecular engineering of quinoxaline-based organic sensitizers for highly efficient and stable dye-sensitized solar cells. Chem. Mater. 2012, 24, 3179-3187. (c) Jung, C.Y.; Song, C.J.; Yao, W.; Park, J.M.; Hyun, I.H.; Seong, D.H.; Jaung, J.Y. Synthesis and performance of new quinoxaline-based dyes for dye sensitized solar cell. Dyes Pigments 2015, 121, 204-210.
  • Chen CT, Wei Y, Lin JS, et al. Doubly ortho-linked Quinoxaline/Diphenylfluorene hybrids as bipolar, fluorescent chameleons for optoelectronic applications. J Am Chem Soc. 2006;128:10992–10993.
  • Chen HC, Chen YH, Liu CC, et al. Prominent short-circuit currents of fluorinated Quinoxaline-Based Copolymer solar cells with a power conversion efficiency of 8.0%. Chem Mater. 2012;24:4766–4772.
  • Yang J, Uddin MA, Tang Y, et al. Quinoxaline-based wide band gap polymers for efficient nonfullerene organic solar cells with large open-circuit voltages. ACS Appl Mater Interfaces. 2018;27:23235–23246.
  • Kim H, Reddy MR, Hong SS, et al. Synthesis and characterization of quinoxaline derivative as organic semiconductors for organic thin-film transistors. J Nano sci Nanotechnol. 2017;17:5530–5538. (b) Iyer, A.; Bjorgaard, J.; Anderson, T.; Kose, M.E. Quinoxaline-based semiconducting polymers: effect of fluorination on the photophysical, thermal, and charge transport properties. Macromolecules, 2012, 45, 6380-6389.
  • Pereira JDS, Neri JM, Emerenciano DP, et al. Experimental and theoretical analysis of an oxazinoquinoxaline derivative for corrosion inhibition of AISI 1018steel. Quim Nova. 2018. (b) El Aoufir, Y.; Lgaz, H.; Bourazmi, H.; Kerroum, Y.; Ramli, Y.; Guenbour, A.; Salghi, R.; El-Hajjaji, F.; Hammouti, B.; Oudda, H. Quinoxaline derivatives as corrosion inhibitors of carbon steel in hydrochloridric acid media: electrochemical, DFT and Monte Carlo simulations studies. J. Mater. Environ. Sci. 2016, 7, 4330-4347. (c) Chitra, S.; Parameswari, K.; Vidhya, M.; Kalishwari, M.; Selvaraj, A. Evaluation of quinoxalines as corrosion inhibitors for mild steel in acid environment. Int. J. Electrochem. Sci. 2011, 6, 45934613. 2018;(41):243–250.
  • Duane RR. Synthesis of 2,3-dichloroquinoxalines via Vilsmeier reagent chlorination. J Heterocyclic Chem. 2009;46:317–319.
  • Ahammed KS, Pal R, Chakraborty J, et al. DNA structural alteration leading to antibacterial properties of 6-Nitroquinoxaline derivatives. J Med Chem. 2019;62:7840–7856.
  • Paliwal S, Sharma S, Dwivedi J, et al. Synthesis of novel substituted phenyl-3-Hydrazinyl-Quinoxaline-2-Amine derivatives: evaluation of antimicrobial activity and its molecular docking studies. J Heterocyclic Chem. 2017;54:3689–3695.
  • Jorgensen JH, Murray E, R P, et al. Susceptibility Test methods: dilution and Disk diffusion methods. Manual Clin Microbiol. 2007;2:1152–1173.
  • Ingroff E, Pfaller MA, et al. Manual of clinical microbiology. Murray PR, Baron EJ, Jorgensen Jorgensen, Editors. Susceptibility test methods: yeasts and filamentous fungi, in manual of clinical microbiology, 2007 (Washington: ASM Press), 2 Institute Name - Medical Mycology Research Laboratory, Division of Infectious Diseases, VCU Medical Center, 1101 East Marshall Street, Sanger Hall Room 7-049, Richmond, VA 23298-0049, USA. 1972-1986.
  • Pavan VP, Indrani B, Dhananjay B, et al. Capturing state-dependent dynamic events of GABAA-receptors: a microscopic look into the structural and functional insights. J Biomol Struct Dyn. 2016;34:1818–1837.
  • Chandrima J, Pritha B, Pavan VP, et al. Chelerythrine–lysozyme interaction: spectroscopic studies, thermodynamics and molecular modeling exploration. Phys Chem Chem Phys. 2015;17:16630–16645.
  • Pavan VP, Sudipendra NR, Dhananjay B, et al. Cross-talk between allosteric and orthosteric binding sites of γ-amino butyric acid type A receptors (GABAA-Rs): a computational study revealing the structural basis of selectivity. J Biomol Struct Dyn. 2019;37(12):3065–3080.
  • Indrani B, Pavan VP. Use of molecular dynamics simulations in structure-based drug discovery. Curr Pharm Des. 2019;25(31):3339–3349. PMID: 31480998.
  • Bax BD, Chan PF, Eggleston DS, et al. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature. 2010;466:935–994.
  • Schrodinger Release 2009. Schrödinger, LLC, New York, NY, 2009.
  • Schrödinger Release 2009. QikProp, Schrödinger, LLC, New York, NY, 2009.
  • Schrödinger Release 2009: Glide, Schrödinger, LLC, New York, NY, 2009.
  • Friesner RA, Banks JL, Murphy RB, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47:1739–1749.
  • Jacobson MP, Pincus DL, Rapp CS, et al. A hierarchical approach to all-atom protein loop prediction. Proteins. 2004;55:351–367.
  • Schrödinger Release 2009: Prime MM/GBSA, Schrödinger, LLC, New York, NY, 2010.
  • HyperChem (Version 7.5). Gainesville,FL: Hypercube Inc., 2003.
  • Schrödinger Release 2009: Pymol, Schrödinger, LLC, New York, NY, 2010.