534
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exenatide promotes the autophagic function in the diabetic hippocampus: a review

ORCID Icon, , , &
Pages 229-238 | Received 18 Feb 2022, Accepted 14 Apr 2022, Published online: 20 Apr 2022

References

  • McCrimmon RJ, Ryan CM, Frier BM. Diabetes and cognitive dysfunction. Lancet. 2012;379(9833):2291–2299.
  • Anand KS, Dhikav V. Hippocampus in health and disease: an overview. Ann Indian Acad Neurol. 2012;15(4):239.
  • Muriach M, Flores-Bellver M, Romero FJ, et al. Diabetes and the brain: oxidative stress, inflammation, and autophagy. Oxid Med Cell Longev. 2014;2014.
  • Qian L, Zhu K, Lin Y, et al. Insulin secretion impairment induced by rosuvastatin partly though autophagy in INS‐1E cells. Cell Biol Int. 2020;44(1):127–136.
  • Davidson MB, Bate G, Kirkpatrick P. Exenatide. Nat Rev Drug Discov. 2005;4(9):713.
  • Holst JJ, Vilsbøll T, Deacon CF. The incretin system and its role in type 2 diabetes mellitus. Mol Cell Endocrinol. 2009;297(1–2):127–136.
  • Candeias E, Sebastião I, Cardoso S, et al. Brain GLP-1/IGF-1 signaling and autophagy mediate exendin-4 protection against apoptosis in type 2 diabetic rats. Mol Neurobiol. 2018;55(5):4030–4050.
  • Lee KH, Cho H, Lee S, et al. Enhanced-autophagy by exenatide mitigates doxorubicin-induced cardiotoxicity. Int J Cardiol. 2017;232:40–47.
  • Krause GC, Lima KG, Levorse V, et al. Exenatide induces autophagy and prevents the cell regrowth in HepG2 cells. EXCLI J. 2019;18:540.
  • Abdo E, Saad M, Firgany AED, et al. Exenatide stimulates hippocampal autophagic activity in Alzeheimer rat model. Authorea Prepr. 2020.
  • Zhu W, YU X, LI Z, et al. Exenatide induce the impairment of autophagy flux to damage rat pancreatic tissue. Chin J Endocr Surg. 2016 6 ; 456–460.
  • Tatarkiewicz K, Smith PA, Sablan EJ, et al. Exenatide does not evoke pancreatitis and attenuates chemically induced pancreatitis in normal and diabetic rodents. Am J Physiol Endocrinol Metab. 2010;299(6):E1076–E1086.
  • Zhu Q. The ER stress-autophagy axis: implications for cognitive dysfunction in diabetes mellitus. Clin Sci. 2020;134(11):1255–1258.
  • Johnston D, Amaral DG. Hippocampus. In: Shepherd GM, editor. The synaptic organization of the brain. Oxford University Press; 2004. p. 455–498.
  • Gukovskaya AS, Gukovsky I. Autophagy and pancreatitis. Am J Physiol Gastrointest Liver Physiol. 2012;303(9):G993–G1003.
  • Ikeda F, Dikic I. Atypical ubiquitin chains: new molecular signals. ‘Protein Modifications: beyond the Usual Suspects’ Review Series. EMBO Rep. 2008;9(6):536–542.
  • Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011;469(7330):323–335.
  • Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221(1):3–12.
  • Ma LY, Lv YL, Huo K, et al. Autophagy-lysosome dysfunction is involved in Aβ deposition in STZ-induced diabetic rats. Behav Brain Res. 2017;320:484–493.
  • Yang Z, Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol. 2010;22(2):124–131.
  • Zhang XJ, Chen S, Huang KX, et al. Why should autophagic flux be assessed? Acta Pharmacol Sin. 2013;34(5):595–599.
  • Huang R, Liu W. Identifying an essential role of nuclear LC3 for autophagy. Autophagy. 2015;11(5):852–853.
  • Chen Q, Kang J, Fu C. The Independence of and associations among apoptosis, autophagy, and necrosis. Signal Transduct Target Ther. 2018;3(1):1–11.
  • Lalaoui N, Lindqvist LM, Sandow JJ, et al. The molecular relationships between apoptosis, autophagy and necroptosis. In: Seminars in cell & developmental biology. Vol. 39. Academic Press; 2015. p. 63–69.
  • Ichimura Y, Komatsu M. Selective degradation of p62 by autophagy. In: Seminars in immunopathology. Vol. 32. Springer-Verlag; 2010. p. 431–436.
  • Sánchez-Martín P, Komatsu M. p62/SQSTM1–steering the cell through health and disease. J Cell Sci. 2018;131(21):jcs222836.
  • Marasco MR, Linnemann AK. β-Cell autophagy in diabetes pathogenesis. Endocrinology. 2018;159(5):2127–2141.
  • Watada H, Fujitani Y. Minireview: autophagy in pancreatic β-cells and its implication in diabetes. Mol Endocrinol. 2015;29(3):338–348.
  • Bugliani M, Mossuto S, Grano F, et al. Modulation of autophagy influences the function and survival of human pancreatic beta cells under endoplasmic reticulum stress conditions and in type 2 diabetes. Front Endocrinol (Lausanne). 2019;10:52.
  • Demirtas L, Guclu A, Erdur FM, et al. Apoptosis, autophagy & endoplasmic reticulum stress in diabetes mellitus. Indian J Med Res. 2016;144(4):515.
  • Gonzalez CD, Lee MS, Marchetti P, et al. The emerging role of autophagy in the pathophysiology of diabetes mellitus. Autophagy. 2011;7(1):2–11.
  • Son SM, Song H, Byun J, et al. Altered APP processing in insulin-resistant conditions is mediated by autophagosome accumulation via the inhibition of mammalian target of rapamycin pathway. Diabetes. 2012;61(12):3126–3138.
  • Li Y, Zhang Y, Wang L, et al. Autophagy impairment mediated by S-nitrosation of ATG4B leads to neurotoxicity in response to hyperglycemia. Autophagy. 2017a;13(7):1145–1160.
  • Jung HS, Lee MS. Role of autophagy in diabetes and mitochondria. Ann N Y Acad Sci. 2010;1201(1):79–83.
  • Wu Y, Ye L, Yuan Y, et al. Autophagy activation is associated with neuroprotection in diabetes-associated cognitive decline. Aging Dis. 2019;10(6):1233.
  • Elsaeed E, Hamad A, Erfan O, et al. Effect of exenatide on apoptosis, autophagy, and necroptosis in the hippocampus of STZ-induced diabetic female rats: an immunohistochemical study. Egypt Acad J Biol Sci D Histol & Histochem. 2022;14(1):1–25.
  • Yuan Y, Chen Y, Peng T, et al. Mitochondrial ROS-induced lysosomal dysfunction impairs autophagic flux and contributes to M1 macrophage polarization in a diabetic condition. Clin Sci. 2019;133(15):1759–1777.
  • Gumuslu E, Cine N, Ertan M, et al. Exenatide upregulates gene expression of glucagon‐like peptide‐1 receptor and nerve growth factor in streptozotocin/nicotinamide‐induced diabetic mice. Fundam Clin Pharmacol. 2018;32(2):174–180.
  • Fudim M, White J, Pagidipati NJ, et al. effect of once-weekly exenatide in patients with type 2 diabetes mellitus with and without heart failure and heart failure–related outcomes: insights from the exscel trial. Circulation. 2019;140(20):1613–1622.
  • Jabbour SA, Frías JP, Hardy E, et al. Safety and efficacy of exenatide once weekly plus dapagliflozin once daily versus exenatide or dapagliflozin alone in patients with type 2 diabetes inadequately controlled with metformin monotherapy: 52-week results of the DURATION-8 randomized controlled trial. Diabetes Care. 2018;41(10):2136–2146.
  • Meier JJ, Gallwitz B, Giorgino F. Reviews and novel clinical perspectives on semaglutide: a GLP-1 receptor agonist with both injectable and oral formulations. Front Endocrinol (Lausanne). 2021;12.
  • Kim DS, Choi HI, Wang Y, et al. A new treatment strategy for parkinson’s disease through the gut–brain axis: the glucagon-like peptide-1 receptor pathway. Cell Transplant. 2017;26(9):1560–1571.
  • Li Z, Huang L, Yu X, et al. Exenatide induces impairment of autophagy flux to damage rat pancreas. Pancreas. 2017b;46(1):83–88.
  • Li Z, Zhu S, Huang L, et al. Exendin-4 impairs the autophagic flux to induce apoptosis in pancreatic acinar AR42J cells by down-regulating LAMP-2. Biochem Biophys Res Commun. 2018;496(2):294–301.
  • Arden C. A role for Glucagon-Like Peptide-1 in the regulation of β-cell autophagy. Peptides. 2018;100:85–93.
  • Kong FJ, Wu JH, Sun SY, et al. Liraglutide ameliorates cognitive decline by promoting autophagy via the AMP-activated protein kinase/mammalian target of rapamycin pathway in a streptozotocin-induced mouse model of diabetes. Neuropharmacology. 2018;131:316–325.
  • Yang Y, Fang H, Xu G, et al. Liraglutide improves cognitive impairment via the AMPK and PI3K/Akt signaling pathways in type 2 diabetic rats. Mol Med Rep. 2018;18(2):2449–2457.
  • Bu LL, Liu YQ, Shen Y, et al. Neuroprotection of exendin-4 by enhanced autophagy in a parkinsonian rat model of α-synucleinopathy. Neurotherapeutics. 2021;18(2):962–978.
  • Ji C, Xue GF, Lijun C, et al. A novel dual GLP-1 and GIP receptor agonist is neuroprotective in the MPTP mouse model of Parkinson′ s disease by increasing expression of BNDF. Brain Res. 2016;1634:1–11.