522
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Tempol a superoxide dismutase mimic reduces cardiac muscle cell death through the control of oxidative stress in streptozotocin-induced diabetes

ORCID Icon, , ORCID Icon, & ORCID Icon
Pages 42-54 | Received 19 Sep 2023, Accepted 26 Dec 2023, Published online: 09 Jan 2024

References

  • Marso SP, Daniels GH, Brown-Frandsen K, et al. Leader steering committee; LEADER trial investigators, Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016 Jul 28;375(4):311–322. doi: 10.1056/NEJMoa1603827
  • Mahmoud AM, Hernandez Bautista RJ, Sandhu MA, et al. Beneficial effects of citrus flavonoids on cardiovascular and metabolic health. Oxid Med Cell Longevity. 2019;2019:19. doi: 10.1155/2019/5484138
  • Huxley RR, Peters SA, Mishra GD, et al. Risk of all-cause mortality and vascular events in women versus men with type 1 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2015;3(3):198–206. doi: 10.1016/S2213-8587(14)70248-7
  • Satta S, Mahmoud AM, Wilkinson FL, et al. The role of Nrf2 in cardiovascular function and disease. Oxid Med Cell Longevity. 2017;2017:1–18. doi: 10.1155/2017/9237263
  • Papatheodorou K, Papanas N, Banach M, et al. Complications of diabetes. J Diabetes Res. 2016;2016:1–3. doi: 10.1155/2016/6989453
  • Kherouf A, Aouacheri O, Tichati L, et al. Potential antioxidant properties and anti-diabetic and hepatic/pancreatic protective effects of dietary boswellia serrata gum resin powder against oxidative damage in streptozotocin‐induced diabetic rats. Comparative Clinical Pathology2021. 2021;30(6):891–904. doi: 10.1007/s00580-021-03284-3
  • Vanessa Fiorentino T, Prioletta A, Zuo P, et al. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr Pharm Des. 2013;19(32):5695–5703. doi: 10.2174/1381612811319320005
  • Karasu Ç. Glycoxidative stress and cardiovascular complications in experimentally-induced diabetes: effects of antioxidant treatment. Open Cardiovasc Med J. 2010;4(1):240–256. doi: 10.2174/1874192401004010240
  • Mahmoud AM. Exercise ameliorates metabolic disturbances and oxidative stress in diabetic cardiomyopathy: possible underlying mechanisms. Exercise for cardiovascular disease prevention and treatment: from molecular to clinical, part 1. 2017;207–230. doi: 10.1007/978-981-10-4307-9_12
  • Negre-Salvayre A, Salvayre R, Augé N, et al. Hyperglycemia and glycation in diabetic complications. Antioxid Redox Signaling. 2009;11(12):3071–3109. doi: 10.1089/ars.2009.2484
  • Kolluru GK, Bir SC, Kevil CG. Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med. 2012;2012. doi: 10.1155/2012/918267
  • Nassar T, Kadery B, Lotan C, et al. Effects of the superoxide dismutase-mimetic compound tempol on endothelial dysfunction in streptozotocin-induced diabetic rats. Eur J Pharmacol. 2002;436(1–2):111–118. doi: 10.1016/S0014-2999(01)01566-7
  • Witting PK, Rayner BS, Wu BJ, et al. Hydrogen peroxide promotes endothelial dysfunction by stimulating multiple sources of superoxide anion radical production and decreasing nitric oxide bioavailability. Cell Physiol Biochem. 2007;20(5):255–268. doi: 10.1159/000107512
  • Kaneto H, Katakami N, Matsuhisa M, et al. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm. 2010;11:453892. doi: 10.1155/2010/453892
  • Jiang H, Zhou Y, Nabavi SM, et al. Mechanisms of oxidized LDL-Mediated endothelial dysfunction and its consequences for the development of atherosclerosis. Front Cardiovasc Med. 2022;9:925923. doi: 10.3389/fcvm.2022.925923
  • Wassmann S, Wassmann K, Nickenig G. Modulation of oxidant and antioxidant enzyme expression and function in vascular cells. Hypertension. 2004;44(4):381–386. doi: 10.1161/01.HYP.0000142232.29764.a7
  • Calabrese G, Ardizzone A, Campolo M, et al. Beneficial effect of tempol, a membrane-permeable radical scavenger, on inflammation and osteoarthritis in in vitro models. Biomolecules. 2021;11(3):352. doi: 10.3390/biom11030352
  • Wang M, Li K, Zou Z, et al. Piperidine nitroxide Tempol enhances cisplatin‑induced apoptosis in ovarian cancer cells. Oncol Lett. 2018;16(4):4847–4854. doi: 10.3892/ol.2018.9289
  • Kwon TH, Chao DL, Malloy K, et al. Tempol, a novel stable nitroxide, reduces brain damage and free radical production, after acute subdural hematoma in the rat. J Neurotrauma. 2003 Apr;20(4):337–345. doi: 10.1089/089771503765172291
  • Jollow DJ, Mitchell JR, Zampaglione NA, et al. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3, 4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology. 1974;11(3):151–169. doi: 10.1159/000136485
  • Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide. 2001;5:62–71. doi: 10.1006/niox.2000.0319
  • Beyer WF, Fridovich I. Assaying for superoxide dismutase activity. Anal Biochem. 1987;161(2):559–566. doi: 10.1016/0003-2697(87)90489-1
  • Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126.
  • Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Journal Of Biological Chemistry. 1974;249(22):7130–7139. doi: 10.1016/S0021-9258(19)42083-8
  • Haoult R. Techniques d’histopathologie et de cytopathologie. Ed Maloine. 1984;19:225–227.
  • Bankhead P, Loughrey MB, Fernández JA, et al. QuPath: open source software for digital pathology image analysis. Sci Rep. 2017;7(1):1–7. doi: 10.1038/s41598-017-17204-5
  • Blandin A, Le Lay S. Extracellular vesicles and metabolic diseases: Dangerous liaisons. Med Sci. 2021;37(12):1125–1132. doi: 10.1051/medsci/2021209
  • Domagala TB, Szeffler A, Dobrucki LW, et al. Nitric oxide production and endothelium-dependent vasorelaxation ameliorated by N 1-methylnicotinamide in human blood vessels. Hypertension. 2012;59(4):825–832. doi: 10.1161/hypertensionaha.111.183210
  • Gero D. Hyperglycemia-induced endothelial dysfunction. In: Endothelial dysfunction—old concepts and new challenges. London, UK: IntechOpen; 2007. pp. 179–206.
  • Montiel V, Lobysheva I, Gérard L, et al. Oxidative stress-induced endothelial dysfunction and decreased vascular nitric oxide in COVID-19 patients. EBioMedicine. 2022;77:103893. doi: 10.1016/j.ebiom.2022.103893
  • Zhou DD, Luo M, Shang A, et al. Antioxidant food components for the prevention and treatment of cardiovascular diseases: effects, mechanisms, and clinical studies. Oxid Med Cell Longevity. 2021;2021:1–17. doi: 10.1155/2021/6627355
  • Al-Dujaili EA, Casey C, Stockton A. Antioxidant properties and beneficial cardiovascular effects of a natural extract of pomegranate in healthy volunteers: a randomized preliminary single-blind controlled study. Antioxidants. 2022;11(11):2124. doi: 10.3390/antiox11112124
  • Shah AK, Dhalla NS. Effectiveness of some vitamins in the prevention of cardiovascular disease: a narrative review. Front Physiol. 2021;12:729255. doi: 10.3389/fphys.2021.729255
  • Juárez-Rojop IE, Díaz-Zagoya JC, Ble-Castillo JL, et al. Hypoglycemic effect of Carica papaya leaves in streptozotocin-induced diabetic rats. BMC Complement Altern Med. 2012;12:1–11. doi: 10.1186/1472-6882-12-236
  • Mollica A, Zengin G, Locatelli M, et al. Anti-diabetic and anti-hyperlipidemic properties of Capparis spinosa L.: in vivo and in vitro evaluation of its nutraceutical potential. J Funct Foods. 2017;35:32–42. doi: 10.1016/j.jff.2017.05.001
  • Ghadermazi R, Khoshjou F, Hossini Zijoud SM, et al. Hepatoprotective effect of tempol on oxidative toxic stress in STZ-induced diabetic rats. Toxin Reviews. 2018;37(1):82–86. doi: 10.1080/15569543.2017.1313277
  • Shahidi S, Jabbarpour Z, Saidijam M, et al. The effects of the synthetic antioxidant, tempol, on serum glucose and lipid profile of diabetic and non-diabetic rats. Avicenna J Med Biochem. 2016;4(2016):1–7. doi: 10.17795/ajmb-31043
  • Nzekwe S, Morakinyo A, Ntwasa M, et al. Influence of flavonoid-rich fraction of monodora tenuifolia seed extract on blood biochemical parameters in streptozotocin-induced diabetes mellitus in male Wistar rats. Metabolites. 2023;13(2):292. doi: 10.3390/metabo13020292
  • Badole SL, Chaudhari SM, Jangam GB, et al. Cardioprotective activity of pongamia pinnata in streptozotocin-nicotinamide induced diabetic rats. Bio Med Res Int. 2015;2015:403291. doi: 10.1155/2015/403291
  • Li H, Liu Z, Wang J, et al. Susceptibility to myocardial ischemia-reperfusion injury at early stage of type 1 diabetes in rats. Cardiovasc Diabetol. 2013;12(1):1–11. doi: 10.1186/1475-2840-12-133
  • Lingappan K. NF-κB in oxidative stress. Curr Opin Toxicol. 2018;7:81–86. doi: 10.1016/j.cotox.2017.11.002
  • Rajlic S, Treede H, Münzel T, et al. Early detection is the best prevention-characterization of oxidative stress in diabetes mellitus and its consequences on the cardiovascular system. Cells. 2023;12(4):583. doi: 10.3390/cells12040583
  • Li Q, Zhao M, Wang Y, et al. Associations between serum free fatty acid levels and incident diabetes in a 3-year cohort study. Diabetes Metab Syndr Obes. 2021;2743–2751. doi: 10.2147/DMSO.S302681
  • Krümmel B, von Hanstein AS, Plötz T, et al. Differential effects of saturated and unsaturated free fatty acids on ferroptosis in rat β-cells. J Nutr Biochem. 2022;106:109013. doi: 10.1016/j.jnutbio.2022.109013
  • Zhang D, Li J, Li T. Agmatine mitigates palmitate (PA)-induced mitochondrial and metabolic dysfunction in microvascular endothelial cells. Hum Exp Toxicol. 2022;41:09603271221110857. doi: 10.1177/09603271221110857
  • Sinaei N, Jafari E, Najafi A, et al. Hepatic oxidative damages and glucose tolerance in diabetic rats exposed to repeated oral doses of diazinon. Iran J Toxicol. 2022;16(3):221–228. doi: 10.32598/IJT.16.3.950.1