702
Views
0
CrossRef citations to date
0
Altmetric
Original Article

In-silico screening of bioactive compounds from nut grass (Cyperus rotundus) to inhibit the α-bungarotoxin from Kraits (Bungarus spp.) venom

ORCID Icon, , , & ORCID Icon
Pages 92-103 | Received 15 Oct 2023, Accepted 06 Feb 2024, Published online: 26 Feb 2024

References

  • Gutiérrez JM, Calvete JJ, Habib AG, et al. Snakebite envenoming. Nat Rev Dis Primers. 2017;3(1):1–21. doi: 10.1038/nrdp.2017.63
  • WHO. Snakebite envenoming 2022. [cited 2022 Nov 27]. Available from: https://www.who.int/news-room/fact-sheets/detail/snakebite-envenoming
  • Williams DJ, Faiz MA, Abela-Ridder B, et al. Strategy for a globally coordinated response to a priority neglected tropical disease: snakebite envenoming. PloS Negl Trop Dis. 2019;13(2):12–14. doi: 10.1371/journal.pntd.0007059
  • Gebrewold G, Colston TJ, Abebe A, et al. Distribution of snake species and snakebites in hotspots of Ethiopia. J Infect Developing Countries. 2022;16(8.1):45S–51S. doi: 10.3855/jidc.15973
  • Longbottom J, Shearer FM, Devine M, et al. Vulnerability to snakebite envenoming: a global mapping of hotspots. Lancet. 2018;392(10148):673–684. doi: 10.1016/S0140-6736(18)31224-8
  • Uetz P, Hallermann J The reptile database 2023. [cited 2023 May 22]. Available from: https://reptile-database.reptarium.cz/advanced_search?genus=bungarus&submit=Search
  • Patra A, Chanda A, Mukherjee AK. Quantitative proteomic analysis of venom from southern India common krait (Bungarus caeruleus) and identification of poorly immunogenic toxins by immune-profiling against commercial antivenom. Expert Rev Proteomics. 2019;16(5):457–469. doi: 10.1080/1478945020191609945
  • Rusmili MRA, Yee TT, Mustafa MR, et al. Proteomic characterization and comparison of Malaysian Bungarus candidus and Bungarus fasciatus venoms. J Proteomics. 2014;110:129–144. doi: 10.1016/j.jprot.2014.08.001
  • Tan CH, Lingam TMC, Tan KY. Varespladib (LY315920) rescued mice from fatal neurotoxicity caused by venoms of five major Asiatic kraits (bungarus spp.) in an experimental envenoming and rescue model. Acta Trop. 2022;227:106289. doi: 10.1016/J.ACTATROPICA.2021.106289
  • Tan NH, Ponnudurai G. A comparative study of the biological properties of krait (genus Bungarus) venoms. Comp Biochem Physiol C Toxicol Pharmacol. 1990;95(1):105–109. doi: 10.1016/0742-8413(90)90089-R
  • Mebs D, Narita K, Iwanaga S, et al. Amino acid sequence of α-bungarotoxin from the venom of bungarus multicinctus. Biochem Biophys Res Commun. 1971;44(3):711–716. doi: 10.1016/S0006-291X(71)80141-9
  • Jiang MS, Häggblad J, Heilbronn E. Interaction with chick myotube cholinergic receptors of an α-neurotoxin isolated from venom of the banded krait (bungarus fasciatus). Toxicon. 1986;24(7):713–719. doi: 10.1016/0041-0101(86)90034-6
  • Kuch U, Molles BE, Omori-Satoh T, et al. Identification of alpha-bungarotoxin (A31) as the major postsynaptic neurotoxin, and complete nucleotide identity of a genomic DNA of Bungarus candidus from Java with exons of the Bungarus multicinctus alpha-bungarotoxin (A31) gene. Toxicon. 2003;42(4):381–390. doi: 10.1016/S0041-0101(03)00168-5
  • Talukdar A, Malhotra A, Lalremsanga HT, et al. Bungarus fasciatus venom from eastern and north-east India: venom variation and immune cross-reactivity with Indian polyvalent antivenoms. J Protein Proteomics. 2023;14(1):61–76. doi: 10.1007/S42485-022-00104-2
  • Kullmann FA, Chet de Groat W, Artim DE. Bungarotoxins. In: Jankovic J, Albanese A, Atassi MZ, et al., editors. Botulinum Toxin. Philadelphia: Elsevier; 2009; 425–445.
  • Oswald RE, Freeman JA. Alpha-bungarotoxin binding and central nervous system nicotinic acetylcholine receptors. Neuroscience. 1981;6(1):1–14. doi: 10.1016/0306-4522(81)90239-6
  • Patikorn C, Blessmann J, Nwe MT, et al. Estimating economic and disease burden of snakebite in ASEAN countries using a decision analytic model. PloS Negl Trop Dis. 2022a;16(9):e0010775. doi: 10.1371/JOURNAL.PNTD.0010775
  • Patikorn C, Ismail AK, Abidin SAZ, et al. Situation of snakebite, antivenom market and access to antivenoms in ASEAN countries. BMJ Glob Health. 2022b;7(3):e007639. doi: 10.1136/bmjgh-2021-007639
  • Schioldann E, Mahmood MA, Kyaw MM, et al. Why snakebite patients in Myanmar seek traditional healers despite availability of biomedical care at hospitals? Community perspectives on reasons. PloS Negl Trop Dis. 2018;12(2):e0006299. doi: 10.1371/JOURNAL.PNTD.0006299
  • Upasani SV, Beldar VG, Tatiya AU, et al. Ethnomedicinal plants used for snakebite in India: a brief overview. Integr Med Res. 2017;6(2):114–130. doi: 10.1016/J.IMR.2017.03.001
  • Yirgu A, Chippaux JP. Ethnomedicinal plants used for snakebite treatments in Ethiopia: a comprehensive overview. J Venom Anim Toxins Incl Trop Dis. 2019;25:20190017. doi: 10.1590/1678-9199-JVATITD-2019-0017
  • Dey A, De J. Traditional use of plants against snakebite in Indian subcontinent: a review of the recent literature. Afr J Traditional Comple-mentary Altern Med. 2011;9(1). doi: 10.4314/ajtcam.v9i1.20
  • Dharmadasa RM, Akalanka GC, Muthukumarana PRM, et al. Ethnopharmacological survey on medicinal plants used in snakebite treatments in Western and Sabaragamuwa provinces in Sri Lanka. J Ethnopharmacol. 2016;179:110–127. doi: 10.1016/j.jep.2015.12.041
  • Kadir MF, Karmoker JR, MdR A, et al. Ethnopharmacological survey of medicinal plants used by traditional healers and indigenous people in Chittagong Hill tracts, Bangladesh, for the treatment of snakebite. Evid Based Complement Alternat Med. 2015;2015:1–23. doi: 10.1155/2015/871675
  • Ferreira LAF, Henriques OB, Andreoni AAS, et al. Antivenom and biological effects of ar-turmerone isolated from Curcuma longa (zingiberaceae). Toxicon. 1992;30(10):1211–=1218. doi: 10.1016/0041-0101(92)90437-A
  • Lattmann E, Sattayasai J, Sattayasai N, et al. In-vitro and in-vivo antivenin activity of 2-[2-(5,5,8a-trimethyl-2-methylene-decahydro-naphthalen-1-yl)-ethylidene]-succinaldehyde against ophiophagus hannah venom. J Pharm Pharmacol. 2010;62(2):257–262. doi: 10.1211/JPP.62.02.0014
  • Srimathi R, Sabareesh V, Gurunathan J. Naringenin isolated from citrus reticulata blanco fruit peel inhibits the toxicity of snake venom proteins – an in vitro and in vivo study. Toxicon. 2022;220:106943. doi: 10.1016/j.toxicon.2022.106943
  • Kumar K Hemanth, Razack S, Nallamuthu I, et al. Phytochemical analysis and biological properties of Cyperus rotundus L. Ind Crops Prod. 2014;52:815–826. doi: 10.1016/j.indcrop.2013.11.040
  • Scherf T, Kasher R, Balass M, et al. A β-hairpin structure in a 13-mer peptide that binds α-bungarotoxin with high affinity and neutralizes its toxicity. Proc Natl Acad Sci U S A. 2001;98(12):6629–6634. doi: 10.1073/pnas.111164298
  • Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):1–13. doi: 10.1038/srep42717
  • Banerjee P, Eckert AO, Schrey AK, et al. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46(W1):W257–W263. doi: 10.1093/nar/gky318
  • Drwal MN, Banerjee P, Dunkel M, et al. ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res. 2014;42(W1):W53–W58. doi: 10.1093/nar/gku401
  • Lomize AL, Hage JM, Schnitzer K, et al. PerMM: a web tool and database for analysis of passive membrane permeability and translocation pathways of bioactive molecules. J Chem Inf Model. 2019;59(7):3094–3099. doi: 10.1021/acs.jcim.9b00225
  • Dallakyan S, Olson AJ. Small molecule library screening by docking with PyRx. 2015.
  • BIOVIA DS. Discovery Studio 2019. 2019.
  • Abraham MJ, Murtola T, Schulz R, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/J.SOFTX.2015.06.001
  • UAMS WebGro | UAMS. [cited 2023 May 7]. Available from: https://simlab.uams.edu/
  • Oostenbrink C, Villa A, Mark AE, et al. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem. 2004;25(13):1656–1676. doi: 10.1002/JCC.20090
  • Van Der Spoel D, Lindahl E, Hess B, et al. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26(16):1701–1718. doi: 10.1002/jcc.20291
  • Waring MJ. Defining optimum lipophilicity and molecular weight ranges for drug candidates—molecular weight dependent lower logD limits based on permeability. Bioorg Med Chem Lett. 2009;19(10):2844–2851. doi: 10.1016/j.bmcl.2009.03.109
  • Kadela-Tomanek M, Jastrzębska M, Marciniec K, et al. Lipophilicity, pharmacokinetic properties, and molecular docking study on sars-cov-2 target for betulin triazole derivatives with attached 1,4-quinone. Pharmaceutics. 2021;13(6):781. doi: 10.3390/PHARMACEUTICS13060781/S1
  • Frallicciardi J, Melcr J, Siginou P, et al. Membrane thickness, lipid phase and sterol type are determining factors in the permeability of membranes to small solutes. Nat Commun. 2022;13(1):1–12. doi: 10.1038/s41467-022-29272-x
  • Shinoda W. Biochimica et Biophysica Acta Permeability across lipid membranes ☆. BBA – Biomembr. 2016;1858(10):2254–2265. doi: 10.1016/j.bbamem.2016.03.032
  • Zhang Z, Lu Y, Qi J, et al. An update on oral drug delivery via intestinal lymphatic transport. Acta Pharm Sin B. 2021;11(8):2449–2468. doi: 10.1016/j.apsb.2020.12.022
  • Long C, Wu F, Lu Q, et al. A strategy for efficient preparation of genus-specific diagnostic antibodies for snakebites. Front Immunol. 2021;12:1–14. doi: 10.3389/fimmu.2021.775678
  • Daina A, Zoete V. A BOILED‐Egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedchem. 2016;11(11):1117–1121. doi: 10.1002/cmdc.201600182
  • Kadry H, Noorani B, Cucullo L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS. 2020;17(1):69. doi: 10.1186/s12987-020-00230-3
  • Turner JV, Agatonovic-Kustrin S. In silico prediction of oral bioavailability. Compr Med Chem II. 2006;5:699–724. doi: 10.1016/b0-08-045044-x/00147-4
  • Neumann D, Barchan D, Safran A, et al. Mapping of the alpha-bungarotoxin binding site within the alpha subunit of the acetylcholine receptor. Proc Natl Acad Sci U S A. 1986;83(9):3008–3011. doi: 10.1073/pnas.83.9.3008
  • Chen D, Oezguen N, Urvil P, et al. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci Adv. 2016;2(3). doi: 10.1126/sciadv.1501240
  • Boyenle ID, Adelusi TI, Ogunlana AT, et al. Consensus scoring-based virtual screening and molecular dynamics simulation of some TNF-alpha inhibitors. Inform Med Unlocked. 2022;28:100833. doi: 10.1016/J.IMU.2021.100833
  • Sargsyan K, Grauffel C, Lim C. How Molecular Size Impacts RMSD Applications in Molecular Dynamics Simulations. J Chem Theory Comput. 2017;13(4):1518–1524. doi: 10.1021/ACS.JCTC.7B00028/SUPPL_FILE/CT7B00028_SI_001.PDF
  • Muhammad S, Qaisar M, Iqbal J, et al. Exploring the inhibitory potential of novel bioactive compounds from mangrove actinomycetes against nsp10 the major activator of SARS-CoV-2 replication. Chem Papers. 2022;76(5):3051–3064. doi: 10.1007/S11696-021-01997-X/FIGURES/8
  • Durham E, Dorr B, Woetzel N, et al. Solvent accessible surface area approximations for rapid and accurate protein structure prediction. J Mol Model. 2009;15(9):1093–1108. doi: 10.1007/S00894-009-0454-9
  • Lobanov MI, Bogatyreva NS, Galzitskaia OV. Radius of gyration is indicator of compactness of protein structure. Mol Biol. 2008;42(4):623–628. doi: 10.1134/S0026893308040195
  • Chaieb K, Kouidhi B, Hosawi SB, et al. Computational screening of natural compounds as putative quorum sensing inhibitors targeting drug resistance bacteria: molecular docking and molecular dynamics simulations. Comput Biol Med. 2022;145:105517. doi: 10.1016/J.COMPBIOMED.2022.105517
  • Pace CN, Fu H, Fryar KL, et al. Contribution of hydrogen bonds to protein stability. Protein Sci. 2014;23(5):652–661. doi: 10.1002/PRO.2449