354
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Leaf extracts of Euclea natalensis A.D.C ameliorate biochemical abnormalities in high-fat-low streptozotocin-induced diabetic rats through modulation of the AMPK-GLUT4 pathway

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 232-252 | Received 23 Nov 2023, Accepted 28 Feb 2024, Published online: 30 Mar 2024

References

  • Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–1053. doi: 10.2337/diacare.27.5.1047
  • Skyler JS, Bakris GL, Bonifacio E, et al. Differentiation of diabetes by pathophysiology, natural history, and prognosis. Diabetes. 2017;66(2):241–255 doi: 10.2337/db16-0806
  • ElSayed NA, Aleppo G, Aroda VR, et al. (2023) 2. Classification and diagnosis of diabetes: standards of care in diabetes—2023. Diabetes Care 46:S19–S40. doi: 10.2337/dc23-S002
  • Li M, Chi X, Wang Y, et al. Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Sig Transduct Target Ther. 2022;7(1). doi: 10.1038/s41392-022-01073-0
  • Batista TM, Haider N, Kahn CR (2021) Defining the underlying defect in insulin action in type 2 diabetes. Diabetologia.64(5):994–1006. doi: 10.1007/s00125-021-05415-5
  • Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med. 2011;50(5):567–575. doi: 10.1016/j.freeradbiomed.2010.12.006
  • Kjøbsted R, Hingst JR, Fentz J, et al. AMPK in skeletal muscle function and metabolism. FASEB J. 2018;32(4):1741–1777. doi: 10.1096/fj.201700442R
  • Vázquez MJ, Novelle MG, Rodríguez-Pacheco F, et al. (2020) AMPK-Dependent mechanisms but not hypothalamic lipid signaling mediates GH-Secretory responses to GHRH and ghrelin. 10.3390/cells9091940
  • Xu J, Rajaratnam R. Cardiovascular safety of non-insulin pharmacotherapy for type 2 diabetes. Cardiovasc Diabetol. 2017;16(1). doi: 10.1186/s12933-017-0499-5
  • Sim R, Chong CW, Loganadan NK, et al. Comparative effectiveness of cardiovascular, renal and safety outcomes of second-line antidiabetic drugs use in people with type 2 diabetes: a systematic review and network meta-analysis of randomised controlled trials. Diabetic Med. 2022;39(3). doi: 10.1111/dme.14780
  • Maroyi A. Review of ethnomedicinal uses, phytochemistry and pharmacological properties of euclea natalensis A.DC. Molecules. 2017;22(12):2128. doi: 10.3390/molecules22122128
  • Sales-Peres SHDC, Brianezzi LFDF, Marsicano JA, et al. Evaluation of an experimental gel containing euclea natalensis: An in vitro study. Evid Based Complement Alternat Med. 2012;2012. doi: 10.1155/2012/184346
  • Lall N, Kumar V, Meyer D, et al. In vitro and in vivo antimycobacterial, hepatoprotective and immunomodulatory activity of Euclea natalensis and its mode of action. J Ethnopharmacol. 2016;194:740–748. doi: 10.1016/j.jep.2016.10.060
  • Lall N, Meyer JJM. Antibacterial activity of water and acetone extracts of the roots of euclea natalensis. J Ethnopharmacol. 2000;72(1–2):313–316. doi: 10.1016/S0378-8741(00)00231-2
  • Lall N, Weiganand O, Hussein AA, et al. Antifungal activity of naphthoquinones and triterpenes isolated from the root bark of Euclea natalensis. South Afri J Bot. 2006;72(4):579–583. doi: 10.1016/j.sajb.2006.03.005
  • Nkobole N, Houghton PJ, Hussein A, et al. Antidiabetic activity of Terminalia sericea constituents. Nat Prod Commun. 2011;6(11):1585–1588. doi: 10.1177/1934578x1100601106
  • Deutschländer MS, Lall N, Van de Venter M, et al. Hypoglycemic evaluation of a new triterpene and other compounds isolated from Euclea undulata Thunb. var. myrtina (ebenaceae) root bark. J Ethnopharmacol. 2011;133(3):1091–1095. doi: 10.1016/J.JEP.2010.11.038
  • Brkljača N, Đurović S, Milošević S, et al. Sequential extraction approach for sustainable recovery of various hemp (cannabis sativa L.) bioactive compounds. Sustain Chem Pharm. 2023;35:101213. doi: 10.1016/j.scp.2023.101213
  • OECD. Test guideline 453: combined chronic Toxicity\Carcinogenicity studies. 1981;1–17. https://www.oecd.org/chemicalsafety/testing/41362977.pdf
  • Benedé-Ubieto R, Estévez-Vázquez O, Ramadori P, et al. guidelines and considerations for metabolic tolerance tests in mice. Diabetes Metab Syndr Obesity. 2020;13:439–450. doi: 10.2147/DMSO.S234665
  • Charan J, Kantharia N. How to calculate sample size in animal studies? J Pharmacol Pharmacother. 2013;4:303–306. doi: 10.4103/0976-500X.119726
  • Horakova O, Kroupova P, Bardova K, et al. Metformin acutely lowers blood glucose levels by inhibition of intestinal glucose transport. Sci Rep. 2019;9(1). doi: 10.1038/s41598-019-42531-0
  • Srinivasan K, Viswanad B, Asrat L, et al. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res. 2005;52(4):313–320. doi: 10.1016/j.phrs.2005.05.004
  • Mata-Torres G, Andrade-Cetto A, Espinoza-Hernández FA, et al. Hepatic glucose output inhibition by Mexican plants used in the treatment of type 2 diabetes. Front Pharmacol. 2020;11:1–9. doi: 10.3389/fphar.2020.00215
  • Liu S, Liu Q, Sun S, et al. The application of 2-NBDG as a fluorescent tracer for assessing hepatic glucose production in mice during hyperinsulinemic euglycemic clamp. Acta Pharm Sin B. 2012;2(4):403–410. doi: 10.1016/j.apsb.2012.06.009
  • Aba PE; Aba PE. Evaluation of hepatic glycogen content, some haematological and biochemical parameters of alloxan-induced diabetic rats treated with combinations of glibenclamide and G. latifolium extract. J Complement Integr Med. 2017;14(4):1–8. doi: 10.1515/jcim-2016-0078
  • Erukainure OL, Matsabisa MG, Salau VF, et al. Tetrahydrocannabinol-rich extracts from cannabis sativa L. Improve glucose consumption and modulate metabolic complications linked to neurodegenerative diseases in isolated rat brains. Front Pharmacol. 2020;11:1–10. doi: 10.3389/fphar.2020.592981
  • Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502. doi: 10.1093/clinchem/18.6.499
  • Niroumand S, Khajedaluee M, Khadem-Rezaiyan M, et al. Atherogenic Index of Plasma (AIP): a marker of cardiovascular disease. Med J Islam Repub Iran. 2015;29. doi: 10.1186/1476-511X-6-1
  • Haddad PS, Benhaddou-Andaloussi A, Martineau L, et al. The in vivo antidiabetic activity of Nigella sativa is mediated through activation of the AMPK pathway and increased muscle Glut4 content. Evid Based Complement Alternat Med. 2011;2011:1–9. doi: 10.1155/2011/538671
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–408. doi: 10.1006/meth.2001.1262
  • Wang Y, Wen L, Zhou S, et al. Effects of four weeks intermittent hypoxia intervention on glucose homeostasis, insulin sensitivity, GLUT4 translocation, insulin receptor phosphorylation, and akt activity in skeletal muscle of obese mice with type 2 diabetes. PloS One. 2018;13(9):1–22. doi: 10.1371/journal.pone.0203551
  • Arika WM, Kibiti CM, Njagi JM, et al. Anti-obesity effects of dichloromethane leaf extract of Gnidia glauca in high fat diet-induced obese rats. Heliyon. 2019;5(11):e02800. doi: 10.1016/j.heliyon.2019.e02800
  • Ng TL, Rohac R, Mitchell AJ, et al. An N-nitrosating metalloenzyme constructs the pharmacophore of streptozotocin. Nature. 2019;566(7742):94–99. doi: 10.1038/s41586-019-0894-z
  • Vatandoust N, Rami F, Salehi A, et al. Novel high-fat diet formulation and streptozotocin treatment for induction of prediabetes and type 2 diabetes in rats. Adv Biomed Res. 2018;7(1):107. doi: 10.4103/abr.abr_8_17
  • Mollica A, Zengin G, Locatelli M, et al. An assessment of the nutraceutical potential of Juglans regia L. leaf powder in diabetic rats. Food Chem Toxicol. 2017;107:554–564. doi: 10.1016/j.fct.2017.03.056
  • Yadav VK, Mishra A. In vitro & in silico study of hypoglycemic potential of Pterocarpus marsupium heartwood extract. Nat Prod Res. 2019;33(22):3298–3302. doi: 10.1080/14786419.2018.1471078
  • Liu X, Wang K, Zhou J, et al. Metformin and Berberine suppress glycogenolysis by inhibiting glycogen phosphorylase and stabilizing the molecular structure of glycogen in db/db mice. Carbohydr Polym. 2020;243:116435. doi: 10.1016/j.carbpol.2020.116435
  • Tella T, Masola B, Mukaratirwa S. The effect of Psidium guajava aqueous leaf extract on liver glycogen enzymes, hormone sensitive lipase and serum lipid profile in diabetic rats. Biomed Pharmacother. 2019;109:2441–2446. doi: 10.1016/j.biopha.2018.11.137
  • Hughey CC, Wasserman DH, Lee-Young RS, et al. Approach to assessing determinants of glucose homeostasis in the conscious mouse. Mammalian Genome. 2014;25(9–10):522–538. doi: 10.1007/s00335-014-9533-z
  • Mata-Torres G, Andrade-Cetto A, Espinoza-Hernández F. Approaches to decrease hyperglycemia by targeting impaired hepatic glucose homeostasis using medicinal plants. Front Pharmacol. 2021;12. doi: 10.3389/fphar.2021.809994
  • Wang Z, Dong C. Gluconeogenesis in cancer: function and regulation of PEPCK, FBPase, and G6Pase. Trends Cancer. 2019;5(1):30–45. doi: 10.1016/J.TRECAN.2018.11.003
  • Domínguez Avila JA, Rodrigo García J, González Aguilar GA, et al. The antidiabetic mechanisms of polyphenols related to increased glucagon-like peptide-1 (GLP1) and insulin signaling. Molecules. 2017;22:903–916. doi: 10.3390/molecules22060903
  • Veeramani C, Alsaif MA, Al-Numair KS. Lavatera critica controls systemic insulin resistance by ameliorating adipose tissue inflammation and oxidative stress using bioactive compounds identified by GC–MS. Biomed Pharmacother. 2018;106:183–191. doi: 10.1016/j.biopha.2018.06.121
  • Alamri BN, Bahabri A, Aldereihim AA, et al. Hyperglycemia effect on red blood cells indices. Eur Rev Med Pharmacol Sci. 2019;23:2139–2150. doi: 10.26355/eurrev_201903_17259
  • Karimabad MN, Niknia S, Golnabadi MB, et al. Effect of Citrullus colocynthis extract on glycated hemoglobin formation (in vitro). Eurasian J Med. 2020;52(1):47–51. doi: 10.5152/eurasianjmed.2020.19223
  • Yaribeygi H, Sathyapalan T, Atkin SL, et al. Review article molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid Med Cell Longevity. 2020;2020:1–13. doi: 10.1155/2020/8609213
  • Ahmed OM, Hassan MA, Abdel-Twab SM, et al. Navel orange peel hydroethanolic extract, naringin and naringenin have anti-diabetic potentials in type 2 diabetic rats. Biomed Pharmacother. 2017;94:197–205. doi: 10.1016/j.biopha.2017.07.094
  • de Souza Cardoso J, Oliveira PS, Bona NP, et al. Antioxidant, antihyperglycemic, and antidyslipidemic effects of Brazilian-native fruit extracts in an animal model of insulin resistance. Redox Rep. 2018;23(1):41–46. doi: 10.1080/13510002.2017.1375709
  • Wang ZV, Scherer PE. Adiponectin, the past two decades. J Mol Cell Biol. 2016;8(2):93–100. doi: 10.1093/jmcb/mjw011
  • Kim B, Kim MS, Hyun CK. Syringin attenuates insulin resistance via adiponectin-mediated suppression of low-grade chronic inflammation and ER stress in high-fat diet-fed mice. Biochem Biophys Res Commun. 2017;488(1):40–45. doi: 10.1016/j.bbrc.2017.05.003
  • Gruzdeva O, Borodkina D, Uchasova E, et al. Leptin resistance: underlying mechanisms and diagnosis. Diabetes Metab Syndr Obes. 2019;12:191–198. doi: 10.2147/DMSO.S182406
  • Bartelt A, John C, Schaltenberg N, et al. Thermogenic adipocytes promote HDL turnover and reverse cholesterol transport. Nat Commun. 2017;8(1). doi: 10.1038/ncomms15010
  • Silva JC, César FA, de Oliveira EM, et al. New PPARγ partial agonist improves obesity-induced metabolic alterations and atherosclerosis in LDLr−/− mice. Pharmacol Res. 2016;104:49–60. doi: 10.1016/j.phrs.2015.12.010
  • Emini Veseli B, Perrotta P, De Meyer GRA, et al. Animal models of atherosclerosis. Eur J Pharmacol. 2017;816:3–13. doi: 10.1016/j.ejphar.2017.05.010
  • Dordević M, Grdović N, Mihailović M, et al. Centaurium erythraea extract reduces redox imbalance and improves insulin expression and secretion in pancreatic β-cells exposed to oxidative and nitrosative stress. Arch Biol Sci. 2020;72:117–128. doi: 10.2298/ABS200127005D
  • Phull AR, Majid M, Haq IU, et al. In vitro and in vivo evaluation of anti-arthritic, antioxidant efficacy of fucoidan from Undaria pinnatifida (Harvey) Suringar. International Journal Of Biological Macromolecules. 2017;97:468–480. doi: 10.1016/j.ijbiomac.2017.01.051
  • Kuo Y, Lin C, Shih C, et al. Antrodia camphorata , displays antidiabetic and antihyperlipidemic effects via glucose transporter 4 and AMP-Activated Protein Kinase Phosphorylation in muscles. Evid Based Complement Alternat Med. 2016;2016:1–16. doi: 10.1155/2016/4867092
  • Okoh SO, Asekun OT, Familoni OB, et al. Antioxidant and free radical scavenging capacity of seed and shell essential oils extracted from abrus precatorius (L). Antioxidants. 2014;3(2):278–287. doi: 10.3390/antiox3020278
  • Rehman K, Akash MSH. Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus: how are they interlinked? J Cell Biochem. 2017;118(11):3577–3585. doi: 10.1002/jcb.26097
  • Farina M, Aschner M. Glutathione antioxidant system and methylmercury-induced neurotoxicity: an intriguing interplay. Biochim Biophys Acta Gen Subj. 2019;1863(12):129285. doi: 10.1016/j.bbagen.2019.01.007
  • Naowaboot J, Pannangpetch P, Kukongviriyapan V, et al. Mulberry leaf extract stimulates glucose uptake and GLUT4 Translocation in rat adipocytes. Am J Chin Med (Gard City N Y). 2012;40:163–175. doi: 10.1142/S0192415X12500139
  • Hu R, Yan H, Fei X, et al. Modulation of glucose metabolism by a natural compound from chloranthus japonicus via activation of AMP-activated protein kinase. Sci Rep. 2017;7(1):778. doi: 10.1038/s41598-017-00925-y
  • Hardie DG, Grahame HD. AMPK: a target for drugs and natural products with effects on both diabetes and cancer. Diabetes. 2013;62:2164–2172 7 doi: 10.2337/db13-0368
  • Kamga-Simo FDY, Kamatou GP, Ssemakalu C, et al. Cassia abbreviata enhances glucose uptake and glucose transporter 4 translocation in c2c12 mouse skeletal muscle cells. J Evid Based Integr Med. 2021;26:1–11. doi: 10.1177/2515690X211006333
  • Zhang P, Li T, Wu X, et al. Oxidative stress and diabetes: antioxidative strategies. Front Med. 2020;14(5):583–600. doi: 10.1007/s11684-019-0729-1
  • Galic S, Loh K, Murray-Segal L, et al. AMPK signaling to acetyl-CoA carboxylase is required for fasting- and cold-induced appetite but not thermogenesis. Elife. 2018;7:1–22. doi: 10.7554/eLife.32656
  • Dos Santos JM, Tewari S, Mendes RH. The role of oxidative stress in the development of diabetes mellitus and its complications. J Diabetes Res. 2019;2019:10–13. doi: 10.1155/2019/4189813
  • Oyebode OA, Erukainure OL, Sanni O, et al. Crassocephalum rubens (Juss. Ex Jacq.) S. Moore improves pancreatic histology, insulin secretion, liver and kidney functions and ameliorates oxidative stress in fructose-streptozotocin induced type 2 diabetic rats. Drug Chem Toxicol. 2020;45:481–490. doi: 10.1080/01480545.2020.1716783 2
  • Majd NE, Tabandeh MR, Shahriari A, et al. Okra (Abelmoscus esculentus) Improved Islets Structure, and Down-Regulated PPARs Gene Expression in Pancreas of High-Fat Diet and Streptozotocin-Induced Diabetic Rats. Cell J. 2018;20(1):31–40. doi: 10.22074/cellj.2018.4819