384
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Possible curative effect of venom collected from Algerian bees (Apis mellifera intermissa) on adenine-induced chronic kidney damage in mice

, &
Pages 135-147 | Received 27 Jan 2024, Accepted 01 Mar 2024, Published online: 13 Mar 2024

References

  • Oroojalian F, Charbgoo F, Hashemi M, et al. Recent advances in nanotechnology-based drug delivery systems for the kidney. J Control Release. 2020;321:442–462. doi: 10.1016/j.jconrel.2020.02.027
  • Lameire NH, Bagga A, Cruz D, et al. Acute kidney injury: an increasing global concern. Lancet. 2013;382(9887):170–179. doi: 10.1016/S0140-6736(13)60647-9
  • Webster AC, Nagler EV, Morton RL, et al. Chronic kidney disease. Lancet. 2017;389(10075):1238–1252. doi: 10.1016/S0140-6736(16)32064-5
  • Ali BH, Al-Husseni I, Beegam S, et al. Effect of gum Arabic on oxidative stress and inflammation in adenine–induced chronic renal failure in rats. PLoS One. 2013;8(2):e55242. doi: 10.1371/journal.pone.0055242
  • Ashour WMR, Zamzam MSA, El Sayed HEED, et al. Effect of fetuin-A on adenine-induced chronic kidney disease model in male rats. Iran J Basic Med Sci. 2023;26(5):511. doi: 10.22038/IJBMS.2023.66346.14584
  • Claramunt D, Gil-Peña H, Fuente R, et al. Animal models of pediatric chronic kidney disease. Is adenine intake an appropriate model? Nefrologia. Nefrología. 2015;35(6):517–522. doi: 10.1016/j.nefro.2015.08.004
  • Bukutu C, Vohra S. Complementary Therapies for Renal Diseases. In: Pediatric Kidney Disease. 3rd ed. USA: Springer Link; 2023. p. 1987–2018. doi: 10.1007/978-3-031-11665-0
  • Yuan H, Ma Q, Ye L, et al. The traditional medicine and modern medicine from natural products. Molecules. 2016;21(5):559. doi: 10.3390/molecules21050559
  • Puzari U, Fernandes PA, Mukherjee AK. Pharmacological re-assessment of traditional medicinal plants-derived inhibitors as antidotes against snakebite envenoming: a critical review. J Ethnopharmacol. 2022;292:115208. doi: 10.1016/j.jep.2022.115208
  • Adjlane N, Dainat B, Gauthier L, et al. Atypical viral and parasitic pattern in Algerian honey bee subspecies Apis mellifera intermissa and am sahariensis. Apidologie. 2016;47(5):631–641. doi: 10.1007/s13592-015-0410-x
  • Wesselius T, Heersema DJ, Mostert JP, et al. A randomized crossover study of bee sting therapy for multiple sclerosis. Neurology. 2005;65(11):1764–1768. doi: 10.1212/01.wnl.0000184442.02551.4b
  • Shi P, Xie SH, Yang JL. Pharmacological effects and mechanisms of bee venom and its main components: recent progress and perspective. Front Pharmacol. 2022;13:1001553. doi: 10.3389/fphar.2022.1001553
  • Ullah A, Aldakheel FM, Anjum SI, et al. Pharmacological properties and therapeutic potential of honey bee venom. Saudi Pharm J. 2023;31(1):96–109. doi: 10.1016/j.jsps.2022.11.008
  • Kong R, Lee YS, Kang DH, et al. The antibacterial activity and toxin production control of bee venom in mouse MRSA pneumonia model. BMC Complement Med Ther. 2020;20(1):1–12. doi: 10.1186/s12906-020-02991-8
  • Sobral F, Sampaio A, Falcão S, et al. Chemical characterization, antioxidant, anti-inflammatory and cytotoxic properties of bee venom collected in Northeast Portugal. Food Chem Toxicol. 2016;94:172–177. doi: 10.1016/j.fct.2016.06.008
  • Kim H, Lee G, Park S, et al. Bee venom mitigates cisplatin-induced nephrotoxicity by regulating CD4+ CD25+ Foxp3+ regulatory T cells in mice. Evid Based Complement Altern Med. 2013;2013:1–10. doi: 10.1155/2013/879845
  • Kim JY, Lee SJ, Maeng YI, et al. Protective effects of bee venom against endotoxemia-related acute kidney injury in mice. Biology. 2020;9(7):154. doi: 10.3390/biology9070154
  • Dahdouh F, Belhamzaoui K, Aouadi L, et al. Bee venom causes oxidative stress, biochemical and histopathological changes in the kidney of mice. Physiol Res. 2023;72(4):455–463. doi: 10.33549/physiolres.935125
  • Abdolmaleky HM, Sheng Y, Zhou JR. Bioactive nutraceuticals oligo-lactic acid and fermented soy extract alleviate cognitive decline in mice in part via anti-neuroinflammation and modulation of gut microbiota. Front Nutr. 2023;10:278. doi: 10.3389/fnut.2023.1116278
  • Kurien BT, Everds NE, Scofield RH. Experimental animal urine collection: a review. Lab Anim. 2004;38(4):333–361. doi: 10.1258/0023677041958945
  • Young DS. Effects of drugs on clinical laboratory tests. Ann Clin Biochem. 1997;34(6): 579–81. doi: 10.1177/000456329703400601
  • LA K, McNeely MDD. Folic acid assay. In: Kaplan L, and Pesce A, editors Clinical chemisty st louis CV Mosby. Toronto Canada; 1984. p. 1402–1406.
  • Rodkey FL. Direct spectrophotometric determination of albumin in human serum. Clin Chem. 1965;11(4):478–487. doi: 10.1093/clinchem/11.4.478
  • Samadi-Noshahr Z, Hadjzadeh M, Moradi-Marjaneh R, et al. The hepatoprotective effects of fennel seeds extract and trans-Anethole in streptozotocin-induced liver injury in rats. Food Sci Nutr. 2021;9(2):1121–1131. doi: 10.1002/fsn3.2090
  • Ellman GL, Courtney KD, Andres JV, et al. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7(2):88–95. doi: 10.1016/0006-2952(61)90145-9
  • Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249(22):7130–7139. doi: 10.1016/S0021-9258(19)42083-8
  • Aebi H. Catalase in vitro. Methods in enzymology. 1984;105:121–126. doi: 10.1016/s0076-6879(84)05016-3
  • Bancroft JD MG, Churchill Livingstone, ed. Theory and practice of histological techniques. 6th ed. China: Elsevier health Sciences; 2008.
  • Mammadova FZ, Topchiyeva A. Isolation and identification of biologically active components from the honey bee venom Apis mellifera L. caucasica. Moj Texicol. 2017;3(7):178–181. doi: 10.15406/mojt.2017.03.00078
  • Zolfagharian H, Mohajeri M, Babaie M. Honey bee venom (Apis mellifera) contains anticoagulation factors and increases the blood-clotting time. J Pharmacopunct. 2015;18(4):7–11. doi: 10.3831/KPI.2015.18.031
  • Metzger CE, Swallow EA, Stacy AJ, et al. Adenine-induced chronic kidney disease induces a similar skeletal phenotype in male and female C57BL/6 mice with more severe deficits in cortical bone properties of male mice. PloS One. 2021;16(4):e0250438. doi: 10.1371/journal.pone.0250438
  • Aguiar CF, Naffah-de-Souza C, Castoldi A, et al. Administration of α-galactosylceramide improves adenine-induced renal injury. Mol Med. 2015;21(1):553–562. doi: 10.2119/molmed.2014.00090
  • Morishita Y, Ohnishi A, Watanabe M, et al. Establishment of acute kidney injury mouse model by 0.75% adenine ingestion. Ren Fail. 2011;33(10):1013–1018. doi: 10.3109/0886022X.2011.618906
  • Lee SC, Kim J, La IJ, et al. Characterization of recombinant FAD-independent catabolic acetolactate synthase from Enterococcus faecalis V583. Enzyme Microb Technol. 2013;52(1):54–59. doi: 10.1016/j.enzmictec.2012.10.006
  • Xia CH, Han XT, Zhang X, et al. Yiqihuoxue formula activates autophagy and offers renoprotection in a rat model of adenine-induced kidney disease. Evid Based Complement Altern Med. 2019;2019:1–12. doi: 10.1155/2019/3423981
  • Wang J, Zhang Q, Jin W, et al. Effects and mechanism of low molecular weight fucoidan in mitigating the peroxidative and renal damage induced by adenine. Carbohydr Polym. 2011;84(1):417–423. doi: 10.1016/j.carbpol.2010.11.055
  • Yokozawa T, Nakagawa T, Oya T, et al. Green tea polyphenols and dietary fibre protect against kidney damage in rats with diabetic nephropathy. J Pharm Pharmacol. 2005;57(6):773–780. doi: 10.1211/0022357056154
  • Ali BH, Adham SA, Za’abi M A, et al. Ameliorative effect of chrysin on adenine-induced chronic kidney disease in rats. PLoS One. 2015;10(4):e0125285. doi: 10.1371/journal.pone.0125285
  • Choi J, Choi MS, Jeon J, et al. In vivo longitudinal 920 nm two-photon intravital kidney imaging of a dynamic 2, 8-DHA crystal formation and tubular deterioration in the adenine-induced chronic kidney disease mouse model. Biomed Opt Express. 2023;14(4):1647–1658. doi: 10.1364/BOE.485187
  • Wyngaarden JB, Dunn JT. 8-hydroxyadenine as the intermediate in the oxidation of adenine to 2, 8-dihydroxyadenine by xanthine oxidase. Arch Biochem Biophys. 1957;70(1):150–156. doi: 10.1016/0003-9861(57)90088-7
  • Donate-Correa J, Martín-Carro B, Cannata-Andía JB, et al. Klotho, oxidative stress, and mitochondrial damage in kidney disease. Antioxidants. 2023;12(2):239. doi: 10.3390/antiox12020239
  • Zaaba NE, Al-Salam S, Beegam S, et al. Catalpol attenuates oxidative stress and inflammation via mechanisms involving sirtuin-1 activation and NF-κB inhibition in experimentally-induced chronic kidney disease. Nutrients. 2023;15(1):237. doi: 10.3390/nu15010237
  • Gyurászová M, Gurecká R, Bábíčková J, et al. Oxidative stress in the pathophysiology of kidney disease: implications for noninvasive monitoring and identification of biomarkers. Oxid Med Cell Longev. 2020;2020:1–11. doi: 10.1155/2020/5478708
  • Cai H, Su S, Li Y, et al. Protective effects of Salvia miltiorrhiza on adenine-induced chronic renal failure by regulating the metabolic profiling and modulating the NADPH oxidase/ROS/ERK and TGF-β/Smad signaling pathways. J Ethnopharmacol. 2018;212:153–165. doi: 10.1016/j.jep.2017.09.021
  • Wang D, Jiang X, Teng S, et al. The antidiabetic and antinephritic activities of auricularia cornea (an albino mutant strain) via modulation of oxidative stress in the db/db mice. Front Immunol. 2019;10:1039. doi: 10.3389/fimmu.2019.01039
  • Song X, Pang H, Cui W, et al. Renoprotective effects of enzyme-hydrolyzed polysaccharides from Auricularia polytricha on adenine-induced chronic kidney diseases in mice. Biomed Pharmacother. 2021;135:111004. doi: 10.1016/j.biopha.2020.111004
  • Ali BH, Beegam S, Al-Lawati I, et al. Comparative efficacy of three brands of gum acacia on adenine-induced chronic renal failure in rats. Physiol Res. 2013;62(1):47–56. doi: 10.33549/physiolres.932383
  • Diwan V, Small D, Kauter K, et al. Gender differences in adenine-induced chronic kidney disease and cardiovascular complications in rats. Am J Physiol Physiol. 2014;307(11):F1169–F1178. doi: 10.1152/ajprenal.00676.2013
  • Ali BH, Al-Salam S, Za’abi M A, et al. New model for adenine-induced chronic renal failure in mice, and the effect of gum acacia treatment thereon: comparison with rats. J Pharmacol Toxicol Methods. 2013;68(3):384–393. doi: 10.1016/j.vascn.2013.05.001
  • Hamdy MM, Abdel-Rahman MS, Badary DM, et al. Effects of furosemide and tadalafil in both conventional and nanoforms against adenine-induced chronic renal failure in rats. Eur J Med Res. 2022;27(1):1–17. doi: 10.1186/s40001-022-00747-3
  • Zhang X, Yang Z, Li L, et al. Prevention of injury by resveratrol in a rat model of adenine-induced chronic kidney disease. Trop J Pharm Res. 2017;16(8):2027–2032. doi: 10.4314/tjpr.v16i8.37
  • Rakha MK, Tawfiq RA, Sadek MM, et al. Neurotherapeutic effects of bee venom in a rotenone-induced mouse model of Parkinson’s disease. Neurophysiol. 2018;50(6):445–455. doi: 10.1007/s11062-019-09777-w
  • Son DJ, Lee JW, Lee YH, et al. Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol Ther. 2007;115(2):246–270. doi: 10.1016/j.pharmthera.2007.04.004
  • Bae S, Gu H, Gwon MG, et al. Therapeutic effect of bee venom and Melittin on skin infection caused by Streptococcus pyogenes. Toxins (Basel). 2022;14(10):663. doi: 10.3390/toxins14100663
  • Dantas CG, da Paixão AO, Nunes TLGM, et al. Africanized bee venom (Apis mellifera Linnaeus): neuroprotective effects in a Parkinson’s disease mouse model induced by 6-hydroxydopamine. Toxics. 2022;10(10):583. doi: 10.3390/toxics10100583
  • Kim JY, Jang HJ, Leem J, et al. Protective effects of bee venom-derived phospholipase A2 against cholestatic liver disease in mice. Biomedicines. 2021;9(8):992. doi: 10.3390/biomedicines9080992
  • Zahran F, Mohamad A, Zein N. Bee venom ameliorates cardiac dysfunction in diabetic hyperlipidemic rats. Exp Biol Med (Maywood). 2021;246(24):2630–2644. doi: 10.1177/15353702211045924
  • An HJ, Kim KH, Lee WR, et al. Anti-fibrotic effect of natural toxin bee venom on animal model of unilateral ureteral obstruction. Toxins (Basel). 2015;7(6):1917–1928. doi: 10.3390/toxins7061917
  • Abd El-Wahed AA, Khalifa SA, Sheikh BY, et al. Bee venom composition: from chemistry to biological activity. Stud Nat Prod Chem. 2019;60:459–484.
  • Lee WR, Pak SC, Park KK. The protective effect of bee venom on fibrosis causing inflammatory diseases. Toxins (Basel). 2015;7(11):4758–4772. doi: 10.3390/toxins7114758
  • Hanafi MY, Zaher EL, ElAdely SE, et al. The therapeutic effects of bee venom on some metabolic and antioxidant parameters associated with HFD‑induced non‑alcoholic fatty liver in rats. Exp Ther Med. 2018;15(6):5091–5099. doi: 10.3892/etm.2018.6028
  • El Adham EK, Hassan AI A, Dawoud MM. Evaluating the role of propolis and bee venom on the oxidative stress induced by gamma rays in rats. Sci Rep. 2022;12(1):1–22. doi: 10.1038/s41598-022-05979-1