318
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of NFKB1 and MyD88 expression levels in a sample of non-Hodgkin lymphoma patients before and during chemotherapy

ORCID Icon, &
Pages 386-401 | Received 19 Feb 2024, Accepted 19 Apr 2024, Published online: 11 May 2024

References

  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801. doi: 10.1016/j.cell.2006.02.015
  • Goutagny N, Estornes Y, Hasan U, et al. Targeting pattern recognition receptors in cancer immunotherapy. Target Oncol. 2012;7(1):29–54. doi: 10.1007/s11523-012-0213-1
  • Behzadi P, García-Perdomo HA, Karpiński TM. Toll-like receptors: general molecular and structural biology. J Immunol Res. 2021;2021:9914854. doi: 10.1155/2021/9914854
  • Vu A, Calzadilla A, Gidfar S, et al. Toll-like receptors in mycobacterial infection. Eur J Pharmacol. 2017;808:1–7. doi: 10.1016/j.ejphar.2016.10.018
  • Salem ML, Diaz-Montero CM, El-Naggar SA, et al. The TLR3 agonist poly (I: C) targets CD8+ T cells and augments their antigen-specific responses upon their adoptive transfer into naive recipient mice. Vaccine. 2009;27(4):549–557. doi: 10.1016/j.vaccine.2008.11.013
  • Urban-Wojciuk Z, Khan MM, Oyler BL, et al. The role of TLRs in anti-cancer immunity and tumor rejection. Front Immunol. 2019;10:2388. doi: 10.3389/fimmu.2019.02388
  • Ayala-Cuellar AP, Cho J, Chio, K-C. Toll ‐ like receptors: a pathway alluding to cancer control. Cell Physiol. 2019;234(12):21707–21715.
  • Coleman OI, Haller D. Bacterial signaling at the intestinal epithelial interface in inflammation and cancer. Front Immunol. 2018;8(JAN):1–11. doi: 10.3389/fimmu.2017.01927
  • Isaza-Correa JM, Liang Z, van den Berg A, et al. Toll-like receptors in the pathogenesis of human B cell malignancies. J Hematol Oncol. 2014; Aug7:(1):57.
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34. doi: 10.3322/caac.21551
  • Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016; May127:(20):2375–2390.
  • Berta D, Girma M, Melku M, et al. Role of RNA splicing mutations in diffuse large B cell lymphoma. Int J Gen Med. 2023;2469–2480. doi: 10.2147/IJGM.S414106
  • Perry AM, Diebold J, Nathwani BN, et al. Non-Hodgkin lymphoma in the developing world: review of 4539 cases from the international non-Hodgkin lymphoma Classification Project. Haematologica. 2016;101(10):1244–1250. doi: 10.3324/haematol.2016.148809
  • Nambiar R, Narayanan G, Soman LV, et al. Lymphoblastic lymphoma of the palate. Baylor Univ Med Cent Proc. 2017;30(4):445–446. doi: 10.1080/08998280.2017.11930223
  • Bowzyk Al-Naeeb A, Ajithkumar T, Behan S, et al. Non-Hodgkin lymphoma. BMJ. 2018 Aug;362:k3204. doi: 10.1136/bmj.k3204
  • Chim C-S, Ma S-Y, Au W-Y, et al. Primary nasal natural killer cell lymphoma: long-term treatment outcome and relationship with the International Prognostic Index. Blood. 2004; Jan103:(1):216–221.
  • Sun R-F, Yu Q-Q, Young KH. Critically dysregulated signaling pathways and clinical utility of the pathway biomarkers in lymphoid malignancies. Chronic Dis Transl Med. 2018;4(1):29–44. InternetAvailable from: doi: 10.1016/j.cdtm.2018.02.001
  • Bai L, Chen W, Chen J, et al. Heterogeneity of Toll-like receptor 9 signaling in B cell malignancies and its potential therapeutic application. J Transl Med. 2017;15(1):1–10. doi: 10.1186/s12967-017-1152-5
  • Longo PG, Laurenti L, Gobessi S, et al. The Akt signaling pathway determines the different proliferative capacity of chronic lymphocytic leukemia B-cells from patients with progressive and stable disease. Leukemia. 2007;21(1):110–120. doi: 10.1038/sj.leu.2404417
  • Noack J, Jordi M, Zauner L, et al. TLR9 agonists induced cell death in Burkitt’s lymphoma cells is variable and influenced by TLR9 polymorphism. Cell Death Dis [Internet]. 2012;3(6):e323–11. doi: 10.1038/cddis.2012.60.
  • Zent CS, Smith BJ, Ballas ZK, et al. Phase I clinical trial of CpG oligonucleotide 7909 (PF-03512676) in patients with previously treated chronic lymphocytic leukemia. Leuk Lymphoma. 2012;53(2):211–217. doi: 10.3109/10428194.2011.608451
  • Sánchez-Cuaxospa M, Contreras-Ramos A, Pérez-Figueroa E, et al. Low expression of Toll-like receptors in peripheral blood mononuclear cells of pediatric patients with acute lymphoblastic leukemia. Int J Oncol. 2016;49(2):675–681. doi: 10.3892/ijo.2016.3569
  • Diaz PAL. Clinical immunogenic chemotherapy in refractory sarcoma. Arch Cancer Res. 2018;6(group C):21767. doi: 10.21767/2254-6081-C1-006
  • Zhang Z, Moreira D, Su Y-L, et al. Inhibition of survival signaling in B-Cell lymphoma using TLR9-targeted delivery of NF-Kb decoy oligodeoxynucleotides in vitro and in vivo. Experimental Hematology. 2018;64:S113. doi: 10.1016/j.exphem.2018.06.075
  • Barman I, Sarma MP. MyD88 and cancer. Explor Res Hypothesis Med. 2016;1(2):29–33. doi:10.14218/ERHM.2016.00003
  • Hartmann G, Krieg AM. Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J Immunol. 2000;164(2):944–953. doi: 10.4049/jimmunol.164.2.944
  • Hoffman GE, Schadt EE. variancePartition: interpreting drivers of variation in complex gene expression studies. BMC Bioinf. 2016 Nov;17(1):483. doi: 10.1186/s12859-016-1323-z
  • Liu Z, Page M. A novel gene and pathway-level subtyping analysis scheme to understand biological mechanisms in complex disease: a case study in rheumatoid arthritis. Genomics. 2019 May;111(3):375–382. doi: 10.1016/j.ygeno.2018.02.012
  • Hira ZM, Gillies DF. A review of feature selection and feature extraction methods applied on microarray data. Adv Bioinformatics. 2015;2015:1–13. doi: 10.1155/2015/198363
  • Aoun R, El Hadi C, Tahtouh R, et al. Microarray analysis of breast cancer gene expression profiling in response to 2-deoxyglucose, metformin, and glucose starvation. Cancer Cell Int [Internet]. 2022;22(1):123. doi: 10.1186/s12935-022-02542-w.
  • Labib Salem M, Zidan A-A, Ezz El-Din El-Naggar R, et al. Myeloid-derived suppressor cells and regulatory T cells share common immunoregulatory pathways-related microRnas that are dysregulated by acute lymphoblastic leukemia and chemotherapy. Hum Immunol. 2021; Jan82:(1):36–45.
  • Zidan M, Zidan A-A, Attia Saad M, et al. Altered microRNA expression profile is linked to T-cell exhaustion-related pathways in pediatric patients with acute lymphoblastic leukemia. Hum Immunol. 2023; Feb84:(2):113–122.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402–408. doi: 10.1006/meth.2001.1262
  • Delneste Y, Beauvillain C, Jeannin P. Innate immunity: structure and function of TLRs. Med Sci M/S. 2007;23(1):67–73. doi: 10.1051/medsci/200723167
  • Yang Y, Feng R, Wang YZ, et al. Toll-like receptors: triggers of regulated cell death and promising targets for cancer therapy. Immunol Lett [Internet]. 2020;223(January):1–9. doi: 10.1016/j.imlet.2020.04.002
  • Urban-Wojciuk Z, Khan MM, Oyler BL, et al. The role of TLRs in anti-cancer immunity and tumor rejection. Front Immunol. 2019;10(OCT):1–10. doi: 10.3389/fimmu.2019.02388
  • Jing R, Hu Z-K, Lin F, et al. Mitophagy-mediated mtDNA release aggravates stretching-induced inflammation and lung epithelial cell injury via the TLR9/MyD88/NF-κB pathway. Front Cell Dev Biol. 2020;8:819. doi: 10.3389/fcell.2020.00819
  • Pisani LP, Estadella D, Ribeiro DA. The role of toll like receptors (TLRs) in oral carcinogenesis. Anticancer Res. 2017;37(10):5389–5394.
  • Leppänen J, Helminen O, Huhta H, et al. High toll-like receptor (TLR) 9 expression is associated with better prognosis in surgically treated pancreatic cancer patients. Virchows Arch. 2017;470(4):401–410. doi: 10.1007/s00428-017-2087-1
  • Niu Z, Tang W, Liu T, et al. Cell-free DNA derived from cancer cells facilitates tumor malignancy through Toll-like receptor 9 signaling-triggered interleukin-8 secretion in colorectal cancer. Acta Biochim Biophys Sin (Shanghai). 2018;50(10):1007–1017. doi: 10.1093/abbs/gmy104
  • Weill J-C, Weller S, Reynaud C-A. Human marginal zone B cells. Annu Rev Immunol. 2009;27(1):267–285. doi: 10.1146/annurev.immunol.021908.132607
  • Qian J, Meng H, Lv B, et al. TLR9 expression is associated with PD-L1 expression and indicates a poor prognosis in patients with peripheral T-cell lymphomas. Pathol Pract. 2020;216(3):152703. doi: 10.1016/j.prp.2019.152703
  • Smith TJ, Yamamoto K, Kurata M, et al. Differential expression of Toll-like receptors in follicular lymphoma, diffuse large B-cell lymphoma and peripheral T-cell lymphoma. Exp Mol Pathol [Internet]. 2010;89(3):284–290. doi: 10.1016/j.yexmp.2010.08.003
  • Huang WT, Weng SW, Huang CC, et al. Expression of Toll-like receptor 9 in diffuse large B-cell lymphoma: further exploring CpG oligodeoxynucleotide in NFκB pathway. APMIS. 2012;120(11):872–881. doi: 10.1111/j.1600-0463.2012.02915.x
  • Kang TH, Mao C, Kim YS, et al. TLR9 acts as a sensor for tumor-released DNA to modulate anti-tumor immunity after chemotherapy. J Immunother Cancer. 2019;7(1):1–8. doi: 10.1186/s40425-019-0738-2
  • Harberts E, Gaspari AA. TLR signaling and DNA repair: are they associated? J Invest Dermatol. 2013;133(2):296–302. doi: 10.1038/jid.2012.288
  • Zhong X, Thornton K, Reed E. Computer based analyses of the 5’-flanking regions of selected genes involved in the nucleotide excision repair complex. Int J Oncol. 2000;17(2):375–455. doi: 10.3892/ijo.17.2.375
  • Cai Q, Tu M, Xu-Monette ZY, et al. NF-κ B p50 activation associated with immune dysregulation confers poorer survival for diffuse large B-cell lymphoma patients with wild-type p53. Mod Pathol. 2017 Jun 1;30(6):854–876. doi: 10.1038/modpathol.2017.5
  • Yu H, Lin L, Zhang Z, et al. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther. 2020;5(1):209. doi: 10.1038/s41392-020-00312-6
  • Guo X, Koff JL, Mof AB, et al. Molecular impact of selective NFKB1 and NFKB2 signaling on DLBCL phenotype. 2017;(August. Oncogene. 2017;36(29):4224–4232. doi: 10.1038/onc.2017.90
  • Yu L-L, Yu H-G, Yu J-P, et al. Nuclear factor-kB p65 (RelA) transcription factor is constitutively activated in human colorectal carcinoma tissue. WJG. 2004;10(22):3255. doi: 10.3748/wjg.v10.i22.3255
  • Ye S, Long Y-M, Rong J, et al. Nuclear factor kappa B: a marker of chemotherapy for human stage IV gastric carcinoma. WJG. 2008;14(30):4739. doi: 10.3748/wjg.14.4739
  • Liu T, Zhang L, Joo D, et al. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2(April). doi: 10.1038/sigtrans.2017.23
  • Brown M, Cohen J, Arun P, et al. NF-kappaB in carcinoma therapy and prevention. Expert Opin Ther Targets. 2008 Sep;12(9):1109–1122. doi: 10.1517/14728222.12.9.1109
  • Li, R., Zhang, L., Jiang, X., Li, L., et al. 3D-printed microneedle arrays for drug delivery. Journal of Controlled Release, 350, 933–948. doi: 10.1016/j.jconrel.2022.08.022
  • Kim J-Y, Jung HH, Ahn S, et al. The relationship between nuclear factor (NF)-κB family gene expression and prognosis in triple-negative breast cancer (TNBC) patients receiving adjuvant doxorubicin treatment. Sci Rep. 2016;6(1):1–11. doi: 10.1038/srep31804
  • Ho WC, Dickson KM, Barker PA. Nuclear factor-kappaB induced by doxorubicin is deficient in phosphorylation and acetylation and represses nuclear factor-kappaB-dependent transcription in cancer cells. Cancer Res. 2005 May;65(10):4273–4281. doi: 10.1158/0008-5472.CAN-04-3494
  • Montagut C, Tusquets I, Ferrer B, et al. Activation of nuclear factor-κ B is linked to resistance to neoadjuvant chemotherapy in breast cancer patients. Endocr Relat Cancer. 2006;13(2):607–616. doi: 10.1677/erc.1.01171
  • Concetti J, Wilson CL. NFKB1 and cancer: friend or foe? Cells. 2018;7(9):133. doi: 10.3390/cells7090133
  • Wang EL, Qian Z-R, Nakasono M, et al. High expression of Toll-like receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer. Br J Cancer. 2010;102(5):908–915. doi: 10.1038/sj.bjc.6605558
  • Ngo VN, Young RM, Schmitz R, et al. Oncogenically active MYD88 mutations in human lymphoma. Nature. 2011; Feb470:(7332):115–119.
  • Caner V, Sen Turk N, Baris IC, et al. MYD88 expression and L265P mutation in mature B-cell non-Hodgkin lymphomas. Genet Test Mol Biomarkers. 2015;19(7):372–378. doi: 10.1089/gtmb.2015.0041
  • Ebid OAEH, Ezz El Arab LR, Saad AS, et al. Prognostic impact of MYD88 and TP53 mutations in diffuse large B cell lymphoma. Ann Hematol. 2023;102(12):3477–3488. doi: 10.1007/s00277-023-05420-1
  • Kirschner K, Melton DW. Multiple roles of the ERCC1-XPF endonuclease in DNA repair and resistance to anticancer drugs. Anticancer Res. 2010 Sep;30(9):3223–3232.
  • Kfoury A, Corf KL, Sabeh RE, et al. MyD88 in DNA repair and cancer cell resistance to genotoxic drugs. JNCI: Journal Of The National Cancer Institute. 2013;105(13):937–946. doi: 10.1093/jnci/djt120
  • Schroeder A, Mueller O, Stocker S, et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol. 2006;7(1):1–14. doi: 10.1186/1471-2199-7-3