128
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Markers of oxidative stress and inflammation increase in the lung and liver of partially irradiated rats

&
Pages 412-423 | Received 27 Feb 2024, Accepted 03 May 2024, Published online: 17 May 2024

References

  • Pospíšil P, Prasad A, Rác M. Mechanism of the formation of electronically excited species by oxidative metabolic processes: role of reactive oxygen species. Biomolecules. 2019;9(7):258. doi: 10.3390/biom9070258
  • Georgiou CD, Zisimopoulos D, Kalaitzopoulou E, et al. Radiation-driven formation of reactive oxygen species in oxychlorine-containing mars surface analogues. Astrobiology. 2017;17(4):319–336. doi: 10.1089/ast.2016.1539
  • Abdelrazzak AB, O’Neill P, Hill MA. Influence of ionizing radiation and cell density on the kinetics of autocrine destruction and intercellular induction of apoptosis in precancerous cells. Sci Rep. 2022;12(1):1–12. doi: 10.1038/s41598-022-11253-1
  • Abdelrazzak AB, O’Neill P, Hill MA. Intercellular induction of apoptosis signalling pathways. Radiat Prot Dosim. 2011;143(2–4):289–293. doi: 10.1093/rpd/ncq387
  • Abdelrazzak AB, Pottgießer SJ, Hill MA, et al. Enhancement of peroxidase release from non-malignant and malignant cells through low-dose Irradiation with different radiation quality. Radiat Res. 2016;185(2):199–213. doi: 10.1667/RR14245.1
  • Abdelrazzak AB, Stevens DL, Bauer G, et al. The role of radiation quality in the stimulation of Intercellular Induction of apoptosis in transformed cells at very low doses. Radiat Res. 2011;176(3):346–355. doi: 10.1667/RR2509.1
  • Martin KR, Barrett JC. Reactive oxygen species as double-edged swords in cellular processes: low-dose cell signaling versus high-dose toxicity. Hum Exp Toxicol. 2002;21(2):71–75. doi: 10.1191/0960327102ht213oa
  • Shimura T, Kunugita N. Mitochondrial reactive oxygen species-mediated genomic instability in low-dose irradiated human cells through nuclear retention of cyclin D1. Cell Cycle. 2016;15(11):1410–1414. doi: 10.1080/15384101.2016.1170271
  • Temme J, Bauer G. Low-dose gamma irradiation enhances superoxide anion production by nonirradiated cells through TGF-β1-dependent bystander signaling. Radiat Res. 2013;179(4):422–432. doi: 10.1667/RR3161.2
  • Chittezhath M, Kuttan G. Radioprotective activity of naturally occurring organosulfur compounds. Tumori J. 2006;92(2):163–169. doi: 10.1177/030089160609200213
  • Kohen R, Nyska A. Invited review: oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol. 2002;30(6):620–650. doi: 10.1080/01926230290166724
  • Dong S, Lyu X, Yuan S, et al. Oxidative stress: a critical hint in ionizing radiation induced pyroptosis. Radiat Med Prot. 2020;1(4):179–185. doi: 10.1016/j.radmp.2020.10.001
  • Kim W, Lee S, Seo D, et al. Cellular stress responses in radiotherapy. Cells. 2019;8(9):1105. doi: 10.3390/cells8091105
  • Azzam EI, Jay-Gerin J-P, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012;327(1–2):48–60. doi: 10.1016/j.canlet.2011.12.012
  • Abouelsayed A, Hezma A, El-Bahy GS, et al. Modification of protein secondary structure as an indicator of radiation-induced abscopal effect: a spectroscopic investigation. Spectrochim Acta A Mol Biomol Spectrosc. 2023;287:122093. doi: 10.1016/j.saa.2022.122093
  • Fernandez-Palomo C, Schültke E, Bräuer-Krisch E, et al. Investigation of abscopal and bystander effects in immunocompromised mice after exposure to pencilbeam and microbeam synchrotron radiation. Health Phys. 2016;111(2):149–159. doi: 10.1097/HP.0000000000000525
  • Munro AJ. Bystander effects and their implications for clinical radiotherapy. J Radiol Prot. 2009;29(2A):A133–A142. doi: 10.1088/0952-4746/29/2A/S09
  • Mohye El-Din AA, Abdelrazzak AB, Ahmed MT, et al. Radiation induced bystander effects in the spleen of cranially-irradiated rats. British J Radiol. 2017;90(1080):20170278. doi: 10.1259/bjr.20170278
  • Abouelsayed A, El-Bahy GS, Abdelrazzak AB. FTIR spectroscopic investigations of protein conformation provide clues of radioadaptation in the kidney of low-dose irradiated rats. J Mol Struct. 2024;1295(part 1):136643. doi: 10.1016/j.molstruc.2023.136643
  • Abdelrazzak AB, Hezma A, El-Bahy GS. ATR-FTIR spectroscopy probing of structural alterations in the cellular membrane of abscopal liver cells. Biochimi Biophys Acta (BBA) Biomembr. 2021;1863(11):183726. doi: 10.1016/j.bbamem.2021.183726
  • Marin A, Martin M, Linan O, et al. Bystander effects and radiotherapy. Rep Pract Oncol Radiother: J Greatpoland Cancer Center Poznan And Polish Soci Radiat Oncol. 2015;20(1):12–21. doi: 10.1016/j.rpor.2014.08.004
  • Little JB, Azzam EI, de Toledo SM, et al. Bystander effects: intercellular transmission of radiation damage signals. Radiat Prot Dosimetry. 2002;99(1–4):159–162. doi: 10.1093/oxfordjournals.rpd.a006751
  • Hall EJ, Giaccia AJ. Radiobiology for the Radiologist. Lippincott Williams & Wilkins Philadelphia, USA. 2006.
  • Demaria S, Ng B, Devitt ML, et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol* Biol* Phys. 2004;58(3):862–870. doi: 10.1016/j.ijrobp.2003.09.012
  • Camphausen K, Moses MA, Ménard C, et al. Radiation abscopal antitumor effect is mediated through p53. Cancer Res. 2003;63(8):1990–1993.
  • Koturbash I, Loree J, Kutanzi K, et al. In vivo bystander effect: cranial X-irradiation leads to elevated DNA damage, altered cellular proliferation and apoptosis, and increased p53 levels in shielded spleen. Int J Radiat Oncol* Biolo* Phys. 2008;70(2):554–562. doi: 10.1016/j.ijrobp.2007.09.039
  • Koturbash I, Rugo R, Hendricks C, et al. Irradiation induces DNA damage and modulates epigenetic effectors in distant bystander tissue in vivo. Oncogene. 2006;25(31):4267. doi: 10.1038/sj.onc.1209467
  • Pouget J-P, Georgakilas AG, Ravanat J-L. Targeted and off-target (bystander and abscopal) effects of radiation therapy: redox mechanisms and risk/benefit analysis. Antioxid Redox Signaling. 2018;29(15):1447–1487. doi: 10.1089/ars.2017.7267
  • Avti P, Pathak C, Kumar S, et al. Low dose gamma-irradiation differentially modulates antioxidant defense in liver and lungs of Balb/c mice. Int J Radiat Biol. 2005;81(12):901–910. doi: 10.1080/09553000600567996
  • Kang T-C. Nuclear factor-erythroid 2-related factor 2 (Nrf2) and mitochondrial dynamics/mitophagy in neurological diseases. Antioxidants. 2020;9(7):617. doi: 10.3390/antiox9070617
  • Abdelrazzak AB, El-Missiry MA, Ahmed MT, et al. Effect of low-dose X-rays on the liver of whole-body irradiated rats. Int J Radiat Biol. 2019;95(3):264–273. doi: 10.1080/09553002.2019.1554925
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–254. doi: 10.1016/0003-2697(76)90527-3
  • Gaschler MM, Stockwell BR. Lipid peroxidation in cell death. Biochem Biophys Res Commun. 2017;482(3):419–425. doi: 10.1016/j.bbrc.2016.10.086
  • Esterbauer H, Eckl P, Ortner A. Possible mutagens derived from lipids and lipid precursors. Mutation Res/Rev Genet Toxicol. 1990;238(3):223–233. doi: 10.1016/0165-1110(90)90014-3
  • Marnett LJ. Lipid peroxidation—DNA damage by malondialdehyde. Mutat Res. 1999;424(1–2):83–95. doi: 10.1016/S0027-5107(99)00010-X
  • Zhang W, He Q, Chan L, et al. Involvement of caspases in 4-hydroxy-alkenal–induced apoptosis in human leukemic cells. Free Radic Biol Med. 2001;30(6):699–706. doi: 10.1016/S0891-5849(01)00465-8
  • Abadi SHMH, Shirazi A, Alizadeh AM, et al. The effect of melatonin on superoxide dismutase and glutathione peroxidase activity, and malondialdehyde levels in the targeted and the non-targeted lung and heart tissues after irradiation in xenograft mice colon cancer. Curr Mol Pharmacol. 2018;11(4):326–335. doi: 10.2174/1874467211666180830150154
  • Rashed ER, Abdel-Rafei MK, Thabet NM. Roles of simvastatin and sildenafil in modulation of cranial irradiation-induced bystander multiple organs injury in rats. Inflammation. 2021;44(6):2554–2579. doi: 10.1007/s10753-021-01524-w
  • Greenberger JS. Radioprotection. Vivo. 2009;23(2):323–336.
  • Schaue D, Micewicz ED, Ratikan JA, et al. Radiation and inflammation. Radiat Oncol J. 2015;25(1):4–10.
  • Verma V, Lin SH. Implications of the bystander and abscopal effects of radiation therapy. Clin Cancer Res. 2016;22(19):4763–4765. doi: 10.1158/1078-0432.CCR-16-1512
  • Barcellos-Hoff MH, Dix TA. Redox-mediated activation of latent transforming growth factor-beta 1. Mol Endocrinol. 1996;10(9):1077–1083. doi: 10.1210/mend.10.9.8885242
  • Ehrhart E, Segarini P, Tsang MLS, et al. Latent transforming growth factor β1 activation in situ: quantitative and functional evidence after low‐dose γ‐irradiation 1. FASEB J. 1997;11(12):991–1002. doi: 10.1096/fasebj.11.12.9337152
  • Assoian RK, Fleurdelys BE, Stevenson HC, et al. Expression and secretion of type beta transforming growth factor by activated human macrophages. Proc Natl Acad Sci, USA. 1987;84(17):6020–6024. doi: 10.1073/pnas.84.17.6020
  • Grotendorst GR, Smale G, Pencev D. Production of transforming growth factor beta by human peripheral blood monocytes and neutrophils. J Cell Physiol. 1989;140(2):396–402. doi: 10.1002/jcp.1041400226
  • Iyer R, Lehnert BE. Effects of ionizing radiation in targeted and nontargeted cells. Arch Biochem Biophys. 2000;376(1):14–25. doi: 10.1006/abbi.1999.1684
  • Gow M, Seymour C, Ryan L, et al. Induction of bystander response in human glioma cells using high-energy electrons: a role for TGF-β1. Radiat Res. 2010;173(6):769–778. doi: 10.1667/RR1895.1
  • Shao C, Folkard M, Prise KM. Role of TGF-beta 1 and nitric oxide in the bystander response of irradiated glioma cells. Oncogene. 2008;27(4):434–440. doi: 10.1038/sj.onc.1210653
  • Jiang Y, Chen X, Tian W, et al. The role of TGF-β1–miR-21–ROS pathway in bystander responses induced by irradiated non-small-cell lung cancer cells. Br J Cancer. 2014;111(4):772–780. doi: 10.1038/bjc.2014.368
  • Cabrero A, Alegret M, Sánchez RM, et al. Increased reactive oxygen species production down-regulates peroxisome proliferator-activated α pathway in C2C12 skeletal muscle cells. J Biol Chem. 2002;277(12):10100–10107. doi: 10.1074/jbc.M110321200
  • Mukherjee S, Dutta A, Chakraborty A. The cross-talk between Bax, Bcl2, caspases, and DNA damage in bystander HepG2 cells is regulated by γ-radiation dose and time of conditioned media transfer. Apoptosis. 2022;27(3–4):184–205. doi: 10.1007/s10495-022-01713-4
  • Walsh JG, Cullen SP, Sheridan C, et al. Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc Natl Acad Sci, USA. 2008;105(35):12815–12819. doi: 10.1073/pnas.0707715105
  • Porter AG, Jänicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Diff. 1999;6(2):99–104. doi: 10.1038/sj.cdd.4400476