133
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A histological and immunohistochemical investigation to assess the therapeutic role of metformin nanoemulsion against metformin in a diabetic retinopathy model

, , , , &
Pages 454-468 | Received 29 Jan 2024, Accepted 14 May 2024, Published online: 10 Jun 2024

References

  • Sorour OA, Mehta N, Baumal CR, et al. Morphological changes in intraretinal microvascular abnormalities after anti-VEGF therapy visualized on optical coherence tomography angiography. Eye Vis (Lond). 2020;7(1):29. doi: 10.1186/s40662-020-00195-2
  • Cho NH, Shaw JE, Karuranga S, et al. IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabet Res Clin Pract. 2018;138:271–281. doi: 10.1016/j.diabres.2018.02.023
  • Curtis TM, Gardiner TA, Stitt AW. Microvascular lesions of diabetic retinopathy: clues towards understanding pathogenesis? Eye (Lond). 2009;23(7):1496–1508. doi: 10.1038/eye.2009.108
  • Jiang T, Chang Q, Cai J, et al. Protective effects of melatonin on retinal inflammation and oxidative stress in experimental diabetic retinopathy. Oxid Med Cell Longev. 2016;2016:3528274. doi: 10.1155/2016/3528274
  • Luippold G, Bedenik J, Voigt A, et al. Short- and longterm glycemic control of streptozotocin-induced diabetic rats using different insulin preparations. PLOS ONE. 2016;11(6):e0156346. doi: 10.1371/journal.pone.0156346
  • Titchenell PM, Antonetti DA. Using the past to inform the future: anti-VEGF therapy as a road map to develop novel therapies for diabetic retinopathy. Diabetes. 2013;62(6):1808–1815. doi: 10.2337/db12-1744
  • Abbasian M, Bighlari P, Mahmoodzadeh F, et al. A de novo formulation of metformin using chitosan-based nanomicelles for potential diabetes therapy. J Appl Polym Sci. 2019;136(41):48037. doi: 10.1002/app.48037
  • Bodmer M, Meier C, Krahenbuhl S, et al. Metformin, sulfonylureas, or other antidiabetes drugs and the risk of lactic acidosis or hypoglycemia: a nested case-control analysis. Diabetes Care. 2008;31(11):2086–2091. doi: 10.2337/dc08-1171
  • Ilahi I, Asghar A, Ali S, et al. Beneficial effects of Pentanema vestitum Linn. whole plant on the glucose and other biochemical parameters of alloxan induced diabetic rabbits. ISRN Pharmacol. 2012;2012:478023. doi: 10.5402/2012/478023
  • Hassan NH, Maern S, Saleh D. Does metformin protect against diabetic retinopathy in albino rats? An immunohistochemical study. Cytol & Histol Rep. 2019;2(02):110.
  • Ibrahim IY, Ali FF, Abdel-Hakeem EA, et al. Pathophysiological mechanisms of type 2 diabetes mellitus and the effects of metformin treatment in adult male albino rats. Minia J Med Res. 2023;34(1):209–214. doi: 10.21608/mjmr.2023.184444.1271
  • Freichels H, Danhier F, Préat V, et al. Fluorescent labeling of degradable poly(lactide-co-glycolide) for cellular nanoparticles tracking in living cells. Int J Artif Organs. 2011;34(2):152–160. doi: 10.5301/ijao.2011.6420
  • Jia L. Nanoparticle formulation increases oral bioavailability of poorly soluble drugs: Approaches experimental evidences and theory. Curr Nanosci. 2005;1(3):237–243. doi: 10.2174/157341305774642939
  • Liu KC, Yeo Y. Extracellular stability of nanoparticulate drug carriers. Arch Pharm Res. 2014;37(1):16–23. doi: 10.1007/s12272-013-0286-0
  • Albeltagy RS, Hussein MM, Alazzouni AS, et al. Anti-diabetic effects of metformin nanoemulsion and cell-based therapy on the insulin signaling pathway (IRS1/AKT) and apoptotic related genes in type 2 diabetic rat model. Egypt Acad J Of Biol Sci C, Physiol And Mol Biol. 2021;13(1):159–172. doi: 10.21608/eajbsc.2021.178255
  • Lin C-Y, Chen L-W. Comparison of fuel properties and emission characteristics of two- and three-phase emulsions prepared by ultrasonically vibrating and mechanically homogenizing emulsification methods. Fuel. 2008;87(10–11):2154–2161. doi: 10.1016/j.fuel.2007.12.017
  • Rodrigues FVS, Diniz LS, Sousa RMG, et al. PREPARATION and CHARACTERIZATION of NANOEMULSION CONTAINING a NATURAL NAPHTHOQUINONE. Quím Nova. 2018;41:756–761. doi: 10.21577/0100-4042.20170247
  • Abdel Aziz MT, Wassef MAA, Ahmed HH, et al. The role of bone marrow derived-mesenchymal stem cells in attenuation of kidney function in rats with diabetic nephropathy. Diabetol Metab Syndr. 2014;6(1):34. doi: 10.1186/1758-5996-6-34
  • Bancroft JD, Layton C. The hematoxylins and eosin. Bancroft’s theory and practice of histological techniques. Elsevier; 2019. p. 126–138. doi: 10.1016/B978-0-7020-6864-5.00010-4
  • Armitage P, Berry G, Matthews JNS. Statistical methods in medical research. Fourth ed. 2008. p. 760–783. doi: 10.1002/9780470773666.refs
  • Chibber R, Ben-Mahmud BM, Chibber S, et al. Leukocytes in diabetic retinopathy. Curr Diabetes Rev. 2007;3:3–14. doi: 10.2174/157339907779802139
  • Tang J, Kern TS. Inflammation in diabetic retinopathy. Prog Retin Eye Res. 2011;30:343–358. doi: 10.1016/j.preteyeres.2011.05.002
  • Yu D-Y, Cringle SJ. Retinal degeneration and local oxygen metabolism. Exp Eye Res. 2005;80(6):745–751. doi: 10.1016/j.exer.2005.01.018
  • Masuda T, Shimazawa M, Hara H. Retinal diseases associated with oxidative stress and the effects of a free radical scavenger (Edaravone). Oxid Med Cell Longev. 2017;2017:9208489. doi: 10.1155/2017/9208489
  • Nishimura Y, Hara H, Kondo M, et al. Oxidative stress in retinal diseases. Oxid Med Cell Longev. 2017;2017:4076518. doi: 10.1155/2017/4076518
  • Rathnasamy G, Foulds WS, Ling E-A, et al. Retinal microglia - a key player in healthy and diseased retina. Prog Neurobiol. 2019;173:18–40. doi: 10.1016/j.pneurobio.2018.05.006
  • Cuenca N, Fernández-Sánchez L, Campello L, et al. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res. 2014;43:17–75. doi: 10.1016/j.preteyeres.2014.07.001
  • Campochiaro PA, Akhlaq A. Sustained suppression of VEGF for treatment of retinal/choroidal vascular diseases. Prog Retin Eye Res. 2021;83:100921. doi: 10.1016/j.preteyeres.2020.100921
  • Martin PM, Roon P, Van Ells TK, et al. Death of retinal neurons in streptozotocin-induced diabetic mice. Invest Ophthalmol Vis Sci. 2004;45(9):3330–3336. doi: 10.1167/iovs.04-0247
  • Sadek E, Abd-El Fattah L, El Maadawi Z, et al. Simvastatin ameliorates vascular endothelial growth factor overexpression in a rat model of diabetic retinopathy: a histological and immunohistochemical study. Kasr Al Ainy Med J. 2017;23(1):24. doi: 10.4103/2356-8097.207186
  • Marc RE, Jones BW, Watt CB, et al. Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration. Mol Vis. 2008;14:782–806.
  • Foureaux G, Nogueira BS, Coutinho DCO, et al. Activation of endogenous angiotensin converting enzyme 2 prevents early injuries induced by hyperglycemia in rat retina. Braz J Med Biol Res. 2015;48(12):1109–1114. doi: 10.1590/1414-431X20154583
  • Huang H, Gandhi JK, Zhong X, et al. TNFα is required for late brb breakdown in diabetic retinopathy, and its inhibition prevents leukostasis and protects vessels and neurons from apoptosis. Invest Ophthalmol Vis Sci. 2011;52(3):1336–1344. doi: 10.1167/iovs.10-5768
  • Moran EP, Wang Z, Chen J, et al. Neurovascular cross talk in diabetic retinopathy: Pathophysiological roles and therapeutic implications. Am J Physiol Heart Circ Physiol. 2016;311(3):H738–749. doi: 10.1152/ajpheart.00005.2016
  • El-Halim He A, Helal OK, Salem NE, et al. The possible therapeutic effect of mesenchymal stem cells and their exosomes on experimentally induced diabetic retinopathy in rats: Histological and immunohistochemical study. Egypt J Histol. 2020;43:390–411. doi: 10.21608/ejh.2019.18175.1185
  • Yang Q-H, Zhang Y, Jiang J, et al. Protective effects of a novel drug RC28-E blocking both VEGF and FGF2 on early diabetic rat retina. Int J Ophthalmol. 2018;11(6):935–944. doi: 10.18240/ijo.2018.06.07
  • Roy S, Trudeau K, Roy S, et al. Mitochondrial dysfunction and endoplasmic reticulum stress in diabetic retinopathy: mechanistic insights into high glucose-induced retinal cell death. Curr Clin Pharmacol. 2013;8(4):278–284. doi: 10.2174/1574884711308040003
  • Darnell JE, Lodish HF, Baltimore D. Molecular cell biology. 2nd ed. (NY): Scientific American Books : Distributed by W.H. Freeman; 1990.
  • Zhou F-Q, Waterman-Storer CM, Cohan CS. Focal loss of actin bundles causes microtubule redistribution and growth cone turning. J Cell Bio. 2002;157(5):839–849. doi: 10.1083/jcb.200112014
  • Lee S, Zeiger A, Maloney JM, et al. Pericyte actomyosin-mediated contraction at the cell–material interface can modulate the microvascular niche. J Phys Condens Matter. 2010;22(19):194115. doi: 10.1088/0953-8984/22/19/194115
  • Hammes H-P, Feng Y, Pfister F, et al. Diabetic retinopathy: targeting vasoregression. Diabetes. 2011;60(1):9–16. doi: 10.2337/db10-0454
  • Cai X, McGinnis JF. Diabetic retinopathy: Animal models, therapies, and perspectives. J Diabetes Res. 2016;2016:3789217. doi: 10.1155/2016/3789217
  • Asnaghi V, Gerhardinger C, Hoehn T, et al. A role for the polyol pathway in the early neuroretinal apoptosis and glial changes induced by diabetes in the rat. Diabetes. 2003;52(2):506–511. doi: 10.2337/diabetes.52.2.506
  • Park DY, Lee J, Kim J, et al. Plastic roles of pericytes in the blood–retinal barrier. Nat Commun. 2017;8(1):15296. doi: 10.1038/ncomms15296
  • Pfister F, Feng Y, Vom Hagen F, et al. Pericyte migration: a novel mechanism of pericyte loss in experimental diabetic retinopathy. Diabetes. 2008;57(9):2495–2502. doi: 10.2337/db08-0325
  • Romeo G, Liu W-H, Asnaghi V, et al. Activation of nuclear factor-κb induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes. Diabetes. 2002;51(7):2241–2248. doi: 10.2337/diabetes.51.7.2241
  • Oshitari T, Yamamoto S, Hata N, et al. Mitochondria- and caspase-dependent cell death pathway involved in neuronal degeneration in diabetic retinopathy. Br J Ophthalmol. 2008;92:552–556. doi: 10.1136/bjo.2007.132308
  • Oshitari T, Yamamoto S, Roy S. Increased expression of c-Fos, c-Jun and c-Jun N-terminal kinase associated with neuronal cell death in retinas of diabetic patients. Curr Eye Res. 2014;39(5):527–531. doi: 10.3109/02713683.2013.833248
  • Joussen AM, Doehmen S, Le ML, et al. TNF-alpha mediated apoptosis plays an important role in the development of early diabetic retinopathy and long-term histopathological alterations. Mol Vis. 2009;15:1418–1428.
  • Al-Shabrawey M, Ahmad S, Megyerdi S, et al. Caspase-14: a novel caspase in the retina with a potential role in diabetic retinopathy. Mol Vis. 2012;18:1895–1906.
  • Abu-El-Asrar AM, Dralands L, Missotten L, et al. Expression of apoptosis markers in the retinas of human subjects with diabetes. Invest Ophthalmol Vis Sci. 2004;45(8):2760–2766. doi: 10.1167/iovs.03-1392
  • Barber AJ. Diabetic retinopathy: recent advances towards understanding neurodegeneration and vision loss. Sci China Life Sci. 2015;58(6):541–549. doi: 10.1007/s11427-015-4856-x
  • Wang HJ, Jin YX, Shen W, et al. Low dose streptozotocin (STZ) combined with high energy intake can effectively induce type 2 diabetes through altering the related gene expression. Asia Pac J Clin Nutr. 2007;16 Suppl 1:412–417.
  • Bek T. Immunohistochemical characterization of retinal glial cell changes in areas of vascular occlusion secondary to diabetic retinopathy. Acta Ophthalmol Scand. 1997;75:388–392. doi: 10.1111/j.1600-0420.1997.tb00395.x
  • Michetti F, Clementi ME, Di Liddo R, et al. The S100Bprotein: a multifaceted pathogenic factor more than a biomarker. Int J Mol Sci. 2023;24(11):9605. doi: 10.3390/ijms24119605
  • Vecino E, Rodriguez FD, Ruzafa N, et al. Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res. 2016;51:1–40. doi: 10.1016/j.preteyeres.2015.06.003
  • Jin N, Gao L, Fan X, et al. Friend or Foe? Resident microglia vs bone marrow-derived microglia and their roles in the retinal degeneration. Mol Neurobiol. 2017;54(6):4094–4112. doi: 10.1007/s12035-016-9960-9
  • Kaur G, Singh NK. The role of inflammation in retinal neurodegeneration and degenerative diseases. Int J Mol Sci. 2021;23:386. doi: 10.3390/ijms23010386
  • LaMoia TE, Shulman GI. Cellular and molecular mechanisms of metformin action. Endocr Rev. 2021;42(1):77–96. doi: 10.1210/endrev/bnaa023
  • Hassan BN, Said AA, Fathalla AS. Ameliorative effect of metformin nano emulsion against induced diabetic nephropathy in rat model: microanatomy study. Adv In Basic And Appl Sci. 2023;1(1):55–62. doi: 10.21608/abas.2023.195731.1010
  • Kumar S, Bhanjana G, Verma RK, et al. Metformin-loaded alginate nanoparticles as an effective antidiabetic agent for controlled drug release. J Pharm Pharmacol. 2017;69(2):143–150. doi: 10.1111/jphp.12672