683
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Designing a lightweight 1D convolutional neural network with Bayesian optimization for wheel flat detection using carbody accelerations

, ORCID Icon, &
Pages 311-341 | Received 17 Mar 2020, Accepted 06 Jul 2020, Published online: 24 Jul 2020

References

  • Leiste M, Hecht M, Jobstfinke D, Deghela U. Roadmap zur Digitalisierung der Wagentechnischen Untersuchung. Chair of Rail Vehicles. Intern report 16/2018. Technische Universität Berlin; 2018.
  • GCU. General contract of use for wagons – GCU. Edition dated. 1 January 2018.
  • Bernal E, Spiryagin M, Cole C. Onboard condition monitoring sensors, systems and techniques for freight railway vehicles: a review.IEEE. Sens J. 2019;19:4–24.
  • Schaeffler. Axlebox generator for railway applications.2018. [cited 2020 Jan28]. Available from: https://www.schaeffler.com/remotemedien/media/_shared_media/08_media_library/01_publications/schaeffler_2/brochure/downloads_1/org_de_en.pdf
  • Wheelwright HE, Vincent D. Track defect and wheel damage: detection and location. Perpetuum’s white paper. 2019 [cited 2020 Jan 28]. Available from: https://perpetuum.com/download/track-defect-and-wheel-damage-detection-and-location/?wpdmdl=1480&refresh=5e302ed474a071580216020
  • DB Cargo. Mit intelligenten und leisen Güterwagen für Wachstum im Schienengüterverkehr. Deutsche Bahn. Feb 2018. Available from: https://www.deutschebahn.com/de/presse/pressestart_zentrales_uebersicht/DB-Cargo–Mit-intelligenten-und-leisen-G%C3%BCterwagen-f%C3%BCr-Wachstum-im-Schieneng%C3%BCterverkehr-1440210
  • Harms C. Im minutentakt: wie VTG die Güter aus dem Schwarzen Loch holt. Allianz pro Schiene.2017.[cited 2020 Jan 28]. Available from: https://www.allianz-pro-schiene.de/themen/aktuell/interview-hanno-schell-digitalisierung-gueterwagen-vtg/
  • Shi D, Marin-Perianu R, Marin-Perianu M, Vincent D, Ulianov C, Sutthaweekul R, Hamer A, Tian G. Wireless data communication concept for cargo condition monitoring system. Technical report. Deliverable D2.3. EU Shift2Rail project; Grand Nr:730863-S2-OC-IP5-03-2015; 2018
  • Alemi A, Corman F, Lodewijks G. Condition monitoring approaches for the detection of railway wheel defects. Proc Inst Mech Eng F J Rail Rapid Transit. 2016;231:961–981.
  • Jiang H, Lin J. Fault diagnosis of wheel flat using empirical mode decomposition-Hilbert envelope spectrum. Math Prob Eng. 2018;2018:1–16.
  • Zhao R, Shi H. Research on wheel-flat recognition algorithm for high-speed train based on high-order spectrum feature extraction. J Mech Eng. 2017;53:102.
  • Li Y, Zuo MJ, Lin J. Fault detection method for railway wheel flat using an adaptive multiscale morphological filter. Mech Syst Signal Process. 2017;84:642–658.
  • Liang B, Iwnicki SD, Zhao Y, et al. Railway wheel-flat and rail surface defect modelling and analysis by time–frequency techniques. Veh Syst Dyn. 2013;51:1403–1421.
  • Gericke C Methoden zur on-board-Diagnose von Radlaufflächenschäden: ein Beitrag zur zustandsorientierten Instandhaltung von Schienenfahrzeugen. Dissertation; Technische Universität Berlin. 2013
  • Bosso N, Gugliotta A, Zampieri N. Wheel flat detection algorithm for onboard diagnostic. Measurement. 2018;123:193–202.
  • Bernal E, Spiryagin M, Cole C. Wheel flat detectability for Y25 railway freight wagon using vehicle component acceleration signals. Veh Syst Dyn. 2019;1–21. DOI:10.1080/00423114.2019.1657155
  • Shi D, Bruni S, Stefano A, Hyde P, Regazzi D, Vincent D. Models for reliability, statistical information, real time health status of the rolling stock, prognostic analysis, and economic data. Technical report. Deliverable D4.2. EU Shift2Rail project. Grand no: 730863-S2R-OC-IP5-03-2015; 2018
  • Jangamreddy N A survey on specialised hardware for machine learning. 2019. DOI: 10.13140/RG.2.2.20697.26725
  • Cheng Y, Wang D, Zhou P, Zhang T. A survey of model compression and acceleration for deep neural networks. IEEE signal processing magazine; 2019. Special issue on deep learning for image understanding (arxiv extended version).
  • Landola F, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K. Squeezenet: AlexNet-level accuracy with 50x fewer parameters and <0.5mb model size. arxiv.org. 2016. p. arXiv:1602.07360v4.
  • Chollet F. Xception: deep learning with depthwise separable convolutions. arxiv.org. 2016. p. arXiv:1610.02357v3.
  • Zhang X, Zhou X, Lin M, et al. Shufflenet: an extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Jun19-21; Salt Lake City; 2018.
  • Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H. Mobilenets: efficient convolutional neural networks for mobile vision applications. arxiv.org. 2017: p. arXiv:1704.04861.
  • Ma N, Zhang X, Zheng H, Zheng H, Sun J. Shufflenet v2: practical guidelines for efficient CNN architecture design. 2018. p. arXiv:1807.11164v1.
  • Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L. Mobilenetv2: inverted residuals and linear bottlenecks. arxiv.org. 2018: p. arXiv:1801.04381.
  • Howard A, Sandler M, Chu G, Chen L, Chen B, Tan M, Wang W, Zhu Y, Pang R, Vasudevan V, Le Q, Adam H. Searching for MobileNetV3. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Oct 27-Nov 02; Seoul; 2019.
  • Passalis N, Tefas A. Training lightweight deep convolutional neural networks using bag-of-features pooling. IEEE Trans Neural Netw Learn Syst. 2019;30:1705–1715.
  • Lu Z, Qin S, Li L, et al. One-shot learning hand gesture recognition based on lightweight 3D convolutional neural networks for portable applications on mobile systems. IEEE Access. 2019;7:131732–131748.
  • Yu R, Xu X, Shen Y. Rhnet: lightweight dilated convolutional networks for dense objects counting. Chin Contr Conf. 2019;2019:8455–8459.
  • Cui Y, Shi Y, Sun X, Yin W. S-net: a lightweight convolutional neural network for n-dimensional signals. 2018 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). Jul 23–27; San Diego; 2018; 1–4.
  • Li D, Zeng S, Zhou Y, Pan B, Yang L. Design of high performance convolutional neural network for lightweight platform. 2019 IEEE Fourth International Conference on Data Science in Cyberspace (DSC). Jun 23–25; Hangzhou; 2019; 1–8.
  • Xiang H, Chen L, Xu W. DrfNet: a lightweight and high accuracy network for resource-limited implementation. 2017 IEEE 12th International Conference on ASIC (ASICON). Oct 25-27; Guiyang; 2017; 1086–1089.
  • Zhang X, Zou Y, Wang W. Ld-CNN: a lightweight dilated convolutional neural network for environmental sound classification. 2018 24th International Conference on Pattern Recognition (ICPR). Aug 20–24; Berijing; 2018; 373–378.
  • Liu H, Yao D, Yang J, et al. Lightweight convolutional neural network and its application in rolling bearing fault diagnosis under variable working conditions. Sensors (Basel). 2019 6;19(22):4827. .
  • Wang B, Lei Y, Li N, et al. Deep separable convolutional network for remaining useful life prediction of machinery. Mech Syst Signal Process. 2019;134:106330.
  • Ma S, Liu W, Cai W, et al. Lightweight deep residual CNN for fault diagnosis of rotating machinery based on depthwise separable convolutions. IEEE Access. 2019;7:57023–57036.
  • Ma S, Cai W, Liu W, et al. A lighted deep convolutional neural network based fault diagnosis of rotating machinery. Sensors (Basel). 2019;19(10):2381.
  • Iwnicki SD, Stichel S, Orlova A, et al. Dynamics of railway freight vehicles. Veh Syst Dyn. 2015;53:995–1033.
  • Velasco-Montero D, Fernández-Berni J, Carmona-Galan R, Rodriguez-Vazquez A. Performance analysis of real-time DNN inference on Raspberry Pi. Real Time Image Video Process. Apr 16; Florida; 2018.
  • Shi D, Ulianov C, Sutthaweekul R, Hamer A, Cheng L, Vincent D. Energy concept for cargo condition monitoring. Technical report; Deliverable D2.2; EU Shift2Rail project; Grand no: 730863 - S2R-OC-IP5-03-2015; 2019.
  • Frigo M, Johnson S.G. FFT benchmark methodology. 2020 [Cited 2020 Feb 03]. Available from: http://www.fftw.org/speed/method.html
  • Munoz A, Ertle R, Unser M. Continuous wavelet transform with arbitrary scales and O(n) complexity. Signal Process. 2002;82:749–757.
  • Sundararajan D Fundamentals of the discrete Haar wavelet transform. 2011[Cited 2020 Feb 303]. Available from: https://www.dsprelated.com/Documents/d_sundararajan_lpaper.pdf
  • Wang YH, Yeh CH, Young HWV, et al. On the computational complexity of the empirical mode decomposition algorithm. Phys A Stat Mech Appli. 2014;400:159–167.
  • Louppe G Understanding random forests: from theory to practice. PhD dissertation. arXiv:1407.7502v3. 2015.
  • Claesen M, Smet FD, Suykens JAK, et al. Fast prediction with SVM models containing RBF kernels. arxiv.org. 2014. p. arXiv:1403.0736.
  • Zhang F, Webb GI A comparative study of semi-naive Bayes methods in classification learning. Proceedings of the Fourth Australasian Data Mining Workshop; Dec 05–06; Sydney; 2005; 141–156.
  • Rasmussen C, Williams C. Gaussian processes for machine learning. MIT Press. 2006 [Cited 2020 Feb 03]. ISBN 026218253X. Available from: http://www.gaussianprocess.org/gpml/chapters/RW.pdf
  • LeCun Y, Boser B, Denker J.S, Henderson D, Howard R.E, Hubbard W, Jackel L.D. Handwritten digit recognition with a back-propagation network. Proc Adv Neural Inf Process Syst. 1990; 02: 396–404.
  • Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. arxiv.org. 2015. p. arXiv:1502.03167.
  • Hu J, Shen L, Albanie S, et al. Squeeze-and-excitation networks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition; Jun 19–21; Salt Lake City; 2018; 7132–7141.
  • He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proc IEEE Conf Comput Vis Pattern Recognit(CVPR); Jun 27–30; Las Vegas; 2016;770–778.
  • Veit A, Wilber M, Belongie S. Residual networks behave like ensembles of relatively shallow networks. arxiv.org. 2016. p. arXiv:1605.06431.
  • Maas A.L, Hannun A.Y, Andrew Y. Rectifier nonlinearities improve neural network acoustic models. In: Proc. 30th International Conference on Machine Learning (ICML); Jun 16–21; Atlanta; 2013. p. 30.
  • Djork-Arné C, Unterthiner T, Hochreiter S. Fast and accurate deep network learning by exponential linear units (ELUS). arxiv.org. 2016. p. arXiv:1511.07289.
  • Ramach P, Zoph B, Le Q. Searching for activation functions. arxiv.org. 2017. p. arXiv:1710.05941.
  • Misra D. Mish: a self-regularized non-monotonic neural activation function. arxiv.org. 2019. p. arXiv:1908.08681.
  • Martinez-Cantin R. Funneled Bayesian optimization for design, tuning and control of autonomous systems. IEEE Trans Cybern. 2019;49:1489–1500.
  • Kingma D, Ba J Adam: a method for stochastic optimisation. 3rd International Conference on Learning Representations (ICLR); San Diego; 2015; 1–13
  • Lin M, Chen Q, Yan S. Network in network. arxiv.org. 2014. p. arXiv:1312.4400.
  • Kou L, Qin Y, Zhao X, et al. Integrating synthetic minority oversampling and gradient boosting decision tree for bogie fault diagnosis in rail vehicles. Proc Inst Mech Eng F J Rail Rapid Transit. 2018;233(3):312–325.
  • Ren Z. An investigation on wheel/rail impact dynamics with a three-dimensional flat model. Veh Syst Dyn. 2018;57(3):369–388.
  • Wang X, Makis V, Yang M. A wavelet approach to fault diagnosis of a gearbox under varying load conditions. J Sound Vib. 2010;329:1570–1585.
  • Jia F, Lei Y, Lu N, et al. Deep normalised convolutional neural network for imbalanced fault classification of machinery and its understanding via visualisation. Mech Syst Signal Process. 2018;110:349–367.
  • Zhang W, Li C, Peng G, et al. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working loads. Mech Syst Signal Process. 2018;100:439–453.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.