84
Views
3
CrossRef citations to date
0
Altmetric
Articles

ANNs approach to identify water demand drivers for Saf-Saf river basin

, &
Pages 44-54 | Received 24 Feb 2019, Accepted 15 Nov 2019, Published online: 31 Jan 2020

References

  • Adamowski JF. 2008. Peak daily water demand forecast modeling using artificial neural networks. J Water Resour Plann Manage. 134(2):119–128. doi: 10.1061/(ASCE)0733-9496(2008)134:2(119)
  • Adamowski J, Fung CH, Prasher SO, Ozga-Zielinski B, Sliusarieva A. 2012. Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada. Water Resour Res. 48:W01528. doi: 10.1029/2010WR009945
  • ADE-EP Algérienne Des Eaux. 2017. Tableaux de productions et de facturations d’eau des unités régionales de l’ADE- Années 2010 à 2016-Documents ADE.
  • An A, Shan N, Chan C, Cercone N, Ziarko W. 1996. Discovering rules for water demand prediction: an enhanced rough-set approach. Eng Appl Artif Intell. 9(6):645–653. doi: 10.1016/S0952-1976(96)00059-0
  • ASCE. 2000. Task committee on application of artificial neural networks in hydrology. Artificial neural networks in hydrology, parts I and II. J Hydrol Eng. 5(2):115–123. doi: 10.1061/(ASCE)1084-0699(2000)5:2(115)
  • Bishop CM. 1995. Neural networks for pattern recognition. Oxford: Oxford University Press.
  • Bougadis J, Adamowski K, Diduch R. 2005. Short-term municipal water demand forecasting. Hydrol Processes. 19:137–148. doi: 10.1002/hyp.5763
  • Broomhead DS, Lowe D. 1988. Multi-variable functional interpolation and adaptive networks. ComplexSyst. 2:321–355.
  • Campisi-Pinto S, Adamowski J, Oron G. 2012. Forecasting urban water demand via wavelet-denoising and neural network models. Case study: City of Syracuse, Italy. Water Resour Manage. 26:3539–3558. doi: 10.1007/s11269-012-0089-y
  • Caudill M, Butler C. 1992. Understanding neural networks. Basic networks, Vol. 1. Cambridge (MA): MIT Press.
  • Chokmani K, Ouarda TBMJ, Hamilton S, Ghedira MH, Gingras H. 2008. Comparison of ice-affected streamflow estimates computed using artificial neural networks and multiple regression techniques. J. Hydrol. 349(3):383–396. doi: 10.1016/j.jhydrol.2007.11.024
  • Coulibaly P, Baldwin CK. 2005. Nonstationary hydrological time series forecasting using nonlinear dynamic methods. J Hydrol. 307:164–174. doi: 10.1016/j.jhydrol.2004.10.008
  • Firat M, Yurdusev MA, Turan ME. 2009. Evaluation of artificial neural network techniques for municipal water consumption modeling. Water Resour Manag. 23(4):617–632. doi: 10.1007/s11269-008-9291-3
  • Fletcher D, Goss E. 1993. Forecasting with neural networks: an application using bankruptcy data. Inform Manage. 24:159–167. doi: 10.1016/0378-7206(93)90064-Z
  • Haykin S. 1999. Neural networks: a comprehensive foundation. 2nd ed. Upper Saddle River: Prentice Hall.
  • Heddam S, Bermad A, Dechemi N. 2011. Applications of radial-basis function and generalized regression neural networks for modeling of coagulant dosage in a drinking water-treatment plant: comparative study. J Environ Eng. 137:1209–1214. doi: 10.1061/(ASCE)EE.1943-7870.0000435
  • House-Peters LA, Chang H. 2011. Urban water demand modeling: review of concepts, methods, and organizing principles. Water Resour Res. 47:W05401. doi: 10.1029/2010WR009624
  • Jain A, Kumar VA, Joshi UC. 2001. Short-term water demand forecast modeling at IIT Kanpur using artificial neural networks. Water Resour Manag. 15:299–321. doi: 10.1023/A:1014415503476
  • Khelfaoui F, Zouini D, Tandjir L. 2014. Quantitative and qualitative diagnosis of water resources in the Saf-Saf river basin (north east of Algeria). Desalin Water Treat. 52(10-12):2017–2021. doi: 10.1080/19443994.2013.815583
  • Kim B, Kim S. 2004. Prediction of plasma etching using a classification-based neural network. J Electrochem Soc. 151(9):C585–C589. doi: 10.1149/1.1776593
  • Kisi O. 2008. River flow forecasting and estimation using different artificial neural network techniques. Hydrol Res. 39(1):27–40. doi: 10.2166/nh.2008.026
  • Lahlou M, Colyer D. 2000. Water conservation in Casablanca, Morocco. J Am Water Resour Assoc. 36(5):1003–1012. doi: 10.1111/j.1752-1688.2000.tb05705.x
  • Lallahem S, Mania J. 2003. Evaluation and forecasting of daily groundwater outflow in a small chalky watershed. Hydrol Process. 17(8):1561–1577. doi: 10.1002/hyp.1199
  • Liu J, Savenije HHG, Xu J. 2003. Forecast of water demand in Weinan City in China using WDF-ANN model. Phys Chem Earth. 28:219–224. doi: 10.1016/S1474-7065(03)00026-3
  • Maidment DR, Miaou SP. 1986. Daily water use in nine cities. Water Resour Res. 22(6):845–851. doi: 10.1029/WR022i006p00845
  • Maier HR, Dandy GC. 1996. The use of artificial neural networks for the prediction of water quality parameters. Water Resour Res. 32(4):1013–1022. doi: 10.1029/96WR03529
  • Nagesh Kumar D, Srinivasa Raju K, Sathish T. 2004. River flow forecasting using recurrent neural networks. Water Resour Manage. 18(2):143–161. doi: 10.1023/B:WARM.0000024727.94701.12
  • Najjar Y, Zhang X. 2000. Characterizing the 3D stress-strain behavior of sandy soils: a neuro-mechanistic approach. In Filz G, Griffiths D, editors. ASCE geotechnical special publication No. 96. p. 43–57.
  • Nourani V, Mogaddam AA, Nadiri A. 2008. An ANN-based model for spatiotemporal groundwater level forecasting. Hydrol Process. 22:5054–5066. doi: 10.1002/hyp.7129
  • Olden JD, Jackson DA. 2002. Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks. Ecol Model. 154:135–150. doi: 10.1016/S0304-3800(02)00064-9
  • Park J, Sandberg IW. 1993. Approximation and radial-basis-function networks. Neural Computation. 5:305–316. doi: 10.1162/neco.1993.5.2.305
  • Platikanov S, Puig X, Martin J, Tauler R. 2007. Stream temperature modelling using artificial neural networks: application on Catamaran Brook, New Brunswick, Canada. Water Res. 41:3394–3406. doi: 10.1016/j.watres.2007.04.015
  • Ross T. 1996. Indices for performance evaluation of predictve models in food microbiology. J Appl Bacteriol. 81:501–508.
  • Rumelhart DE, Hinton GE, Williams RJ. 1986. Learning internal representations by error propagation. In: Rumelhart DE, McClelland JL, editors. Parallel Distributed Processing. Cambridge: The MIT Press; Vol. 1, p. 318–362.
  • Sakaa B, Chaffai H, Hani A. 2013. The use of artificial neural networks in the modeling of socioeconomic category of integrated water resources management (case study: Saf-Saf river basin, North East of Algeria). Arab J Geosci. 6:3969–3978. doi: 10.1007/s12517-012-0654-y
  • Sakaa B, Merdas S, Mostephaoui T, Chaffai H, Hani A, Djabri L. 2016. The application of ANNs and multivariate statistical techniques to characterize a relationship between total dissolved solids and pressure indicators: a case study of the Saf-Saf river basin, Algeria. Desalination Water Treatment. 57(28):12963–12976. doi: 10.1080/19443994.2015.1057535
  • Singh KP, Basant A, Malik A, Jain G. 2009. Artificial neural network modeling of the river water quality—a case study. Ecol Model. 220(6):888–895. doi: 10.1016/j.ecolmodel.2009.01.004
  • Singh KP, Malik A, Sinha S. 2005. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques – a case study. Anal Chim Acta. 538(1):355–374. doi: 10.1016/j.aca.2005.02.006
  • Specht DF. 1991. A general regression neural network. IEEE Trans Neural Netw. 2(6):568–576. doi: 10.1109/72.97934
  • Triana E, Labadie JW, Gates TK, Anderson CW. 2010. Neural network approach to stream-aquifer modeling for improved river basin management. J Hydrol. 391:235–247. doi: 10.1016/j.jhydrol.2010.07.024
  • Vazquez-Amabile G, Engel B. 2005. Use of SWAT to compute groundwater table depth and streamflow in the Muscatatuck River watershed. Trans ASAE. 48(3):991–1003. doi:10.13031/2013.18511.
  • [WMO] World Meteorological Organization. 1975. Inter-comparison of conceptual models used in operational hydrological forecasting, WMO, Technical series. Water Resour. Res. 27(9):2415–2450.
  • Worthington AC, Hoffman M. 2008. An empirical survey of residential water demand modelling. J Econ Surv. 22(5):842–871. doi: 10.1111/j.1467-6419.2008.00551.x
  • Zhou L, McMahon TA, Walton A, Lewis J. 2000. Forecasting daily urban water demand: a case study of Melbourne. J Hydrol. 236(3):153–164. doi: 10.1016/S0022-1694(00)00287-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.